
© The Khronos® Group Inc. 2023 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan: Forging Ahead

August 2023

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2022 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Update
Tom Olson, Arm

Vulkan Working Group Chair

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Outline

What is Vulkan? (the short version)

What’s new?
• Adoption
• Functionality
• Documentation and support
• Profiles

What’s next?
• Roadmap and future specifications

© The Khronos® Group Inc. 2023 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

What is Vulkan

© The Khronos® Group Inc. 2023 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan
A modern API for graphics and compute on GPUs

• Descended from OpenGL / OpenGL ES
• Radically cross-platform
• One API across desktop and mobile

No-compromise focus on performance
• Driving use case is AAA games

Developer has control / responsibility for
• Memory and object management
• Scheduling and synchronization
• Multithreading
• Error checking

© The Khronos® Group Inc. 2023 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Adoption

Note: The version of Vulkan available will depend on platform and vendor

Engines

Croteam
Serious Engine

Desktop and Mobile GPUs and SOCs

http://vulkan.gpuinfo.org/

Windows and Linux
Desktops and Cloud

Mobile Game Streaming
Platforms

Gaming
Platforms

Apple Platforms
(via translation layer)

http://vulkan.gpuinfo.org/

© The Khronos® Group Inc. 2023 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Applications

Mobile Games

Desktop Games

Not Games at All

© The Khronos® Group Inc. 2023 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Evolution

2016

1.0

2018

1.1

2020

1.2

2022

1.3

Roadmap 2022

© The Khronos® Group Inc. 2023 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

What’s New:

Adoption

© The Khronos® Group Inc. 2023 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan on MacOS / iOS

MoltenVK
• Shim library for MacOS/iOS
• Maps Vulkan calls to native Metal API
• Shaders translated using spirv-cross

Current status
• Fully supported in LunarG SDK
• Provides Vulkan 1.2 (portability subset) MacOS / iOS

Application

© The Khronos® Group Inc. 2023 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Applications and Engines Using MoltenVK

● DOTA 2
● Metro Exodus
● Final Fantasy XIV
● Dark Souls: Remastered
● Dark Souls III

● DOTA Underlords
● Aerofly Flight Simulator 2
● Path of Exile
● Raft
● The Elder Scrolls Online

● Celeste
● Transport Fever 2
● Shadow Warrior 2
● Streets of Rage 4
● Jupiter Hell

● VKD3D (Direct3D 12)
● DXVK (Direct3D 9/10/11)

● Platform emulators using MoltenVK
● Ryujinx (Switch)
● Cemu (Wii U)

● Google Android Emulator
● Dolphin (Wii & GameCube)

● Autodesk Fusion 360

● Engines using MoltenVK
● Ultra Engine
● Diligent Engine
● Godot

● Google Filament
● Defold
● Acid

● Halo: Combat Evolved
● God of War (2018)
● Grand Theft Auto V

● Games shipping with MoltenVK

● Guild Wars 2
● Battlefield 1
● Battlefront II

● World Of Tanks
● Forsaken Remastered
● Elder Scrolls V Skyrim: SE

● Games runnable by users via Crossover and MoltenVK

● Wreckfest
● Victoria 3
● Artifact
● GZDOOM
● vkQuake/vkQuake2

● Age of Empires II:
Definitive Edition

● Witcher 3

● RPCS3 (PS3)
● PCSX2 (PS2)

● Blender Vulkan (PoC)
● Clausewitz Engine (Paradox)
● Flax

● Applications shipping with MoltenVK

● Ncnn
● Qt

● NAP

© The Khronos® Group Inc. 2023 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Adoption on Android

Vulkan is available on 85% of active Android devices

https://developer.android.com/about/dashboards

Vulkan 1.1

Vulkan 1.0

None

© The Khronos® Group Inc. 2023 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

What’s New:

Functionality

© The Khronos® Group Inc. 2023 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

New Extensions

Exploratory / Experimental
VK_EXT_mesh_shader
VK_EXT_shader_object
VK_AMDX_shader_enqueue

Debugging DEVICE_LOST
VK_EXT_device_fault
VK_EXT_device_address_binding_report

Vulkan Video
VK_KHR_video_queue
VK_KHR_video_decode_queue
VK_KHR_video_decode_h264
VK_KHR_video_decode_h265

Programming model improvements
VK_EXT_attachment_feedback_loop_dynamic_state
VK_EXT_extended_dynamic_state3
VK_EXT_descriptor_buffer
VK_EXT_mutable_descriptor_type

Tile-based optimizations
VK_EXT_rasterization_order_attachment_access
VK_EXT_shader_tile_image

Maintenance
VK_KHR_maintenance5
VK_EXT_depth_bias_control
VK_KHR_map_memory2
VK_EXT_legacy_dithering
VK_EXT_depth_clamp_01
VK_EXT_image_sliced_view_of_3D

Window System Integration
VK_EXT_surface_maintenance1
VK_EXT_swapchain_maintenance1
VK_EXT_pipeline_protected_access

Other
VK_EXT_host_image_copy
VK_KHR_ray_tracing_position_fetch
VK_EXT_pipeline_library_group_handles

© The Khronos® Group Inc. 2023 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Decode stack is now final
• AMD, Intel, NVIDIA shipping drivers
• Adopted in FFMPEG, used in the MPV player
• Work ongoing in GStreamer
• Support coming in MESA ANV and RADV
• Final encode extensions are progressing well

Vulkan Video Extensions

VK_KHR_video_queue

VK_KHR_video_decode_queue VK_KHR_video_encode_queue

VK_EXT_video_decode_h265

VK_EXT_video_decode_h264 VK_EXT_video_encode_h264

VK_EXT_video_encode_h265

© The Khronos® Group Inc. 2023 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

Tile-based optimizations

VK_EXT_rasterization_order_attachment_access
• Equivalent to GLES Framebuffer Fetch
• Fetches become input attachment reads – requires subpass dependencies

VK_EXT_shader_tile_image
• Functionality of GLES Framebuffer Fetch and Pixel Local Storage
• Works with dynamic rendering!

© The Khronos® Group Inc. 2023 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

Debugging GPU crashes

Extensions to the rescue:
• VK_EXT_device_fault
• VK_EXT_device_address_binding_report

DEVICE_LOST

© The Khronos® Group Inc. 2023 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

What’s New:

Documentation and
Outreach

© The Khronos® Group Inc. 2023 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkanised 2023

Full-scale Vulkan conference in February 2023
• Hosted by Google in Munich, Germany
• Three days of talks, panels, demos, and a Vulkan course

- All on line at https://vulkan.org/learn#videos
• Now planning Vulkanised 2024!

https://vulkan.org/learn#videos

© The Khronos® Group Inc. 2023 - Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Documentation Project
Bring Vulkan documentation together in one place

• Specification, Vulkan Guide, Proposal documents, …
• Easy navigation and cross-linking
• https://registry.khronos.org/vulkan/site/spec/latest/index.html
• Experimental – feedback please! (github.com/KhronosGroup/Vulkan-Docs)

https://registry.khronos.org/vulkan/site/spec/latest/index.html

© The Khronos® Group Inc. 2023 - Page 21This work is licensed under a Creative Commons Attribution 4.0 International License

An idea: Codified VUs?
(AKA Procedural Valid Usage statements)

Valid Usage Today

© The Khronos® Group Inc. 2023 - Page 22This work is licensed under a Creative Commons Attribution 4.0 International License

Procedural Valid Usage

What if we express VU statements as actual code?

i.e. instead of this:

write this:

© The Khronos® Group Inc. 2023 - Page 23This work is licensed under a Creative Commons Attribution 4.0 International License

Procedural Valid Usage
Advantages

• Easier to read?
• Less error-prone to write
• Machine readable / parseable /

Status
• Not committed, but under serious consideration
• Would like community feedback

Would like community feedback:
• Proposal: https://github.com/KhronosGroup/Vulkan-Docs/pull/2043
• Language: https://github.com/KhronosGroup/Vulkan-Docs/pull/2064

https://github.com/KhronosGroup/Vulkan-Docs/pull/2043
https://github.com/KhronosGroup/Vulkan-Docs/pull/2064

© The Khronos® Group Inc. 2023 - Page 24This work is licensed under a Creative Commons Attribution 4.0 International License

What’s New:

SDK and Tools

© The Khronos® Group Inc. 2023 - Page 25This work is licensed under a Creative Commons Attribution 4.0 International License

SDK and Tools News

© The Khronos® Group Inc. 2023 - Page 26This work is licensed under a Creative Commons Attribution 4.0 International License

What’s (kinda) New:

Vulkan Profiles

© The Khronos® Group Inc. 2023 - Page 27This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan is caps-intensive

Implementations can differ in many, many ways
• Core version: 1.0, 1.1., 1.2, 1.3
• Extensions:
• Capabilities:
• Properties: how many render targets? How big can they be? …
• Formats: What pixel formats can I use? Which can I sample? Which can I
render to?

• And so on…

© The Khronos® Group Inc. 2023 - Page 28This work is licensed under a Creative Commons Attribution 4.0 International License

Result

Very hard to write portable code.
• Unfortunately, it has to be this way…

The good news
• Feature support isn’t completely random!
• De facto standards exist for specific markets

Leads to the idea of profiles

© The Khronos® Group Inc. 2023 - Page 29This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Profiles

Minimum capabilities across a set of Vulkan implementations
• Core version
• List of additional requirements for feature, property, and format support
• List of required extensions

External to the Vulkan specification
• Spec doesn’t know about them
• Vulkan drivers do not know what profiles they support
• You can write new profiles to describe old hardware.

© The Khronos® Group Inc. 2023 - Page 30This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Profile Specification

JSON schema
• Machine-readable

Enables code generation
• Support queries
• Device creation
• Set operations
• …

© The Khronos® Group Inc. 2023 - Page 31This work is licensed under a Creative Commons Attribution 4.0 International License

Why Profiles are Awesome

It’s like having your own personal Vulkan spec
• All your favorite extensions and features are supported

No driver update required!
• You can start using it today

No code changes required!
• (almost)

© The Khronos® Group Inc. 2023 - Page 32This work is licensed under a Creative Commons Attribution 4.0 International License

For example

Say you’re writing an Android game…
• Targeting 3-4 years of devices, 4 GPU vendors, 12 handset OEMS
• Capability management is going to be fun!

Suppose Google says
• “if you target this profile,
you’ll reach 90% of devices”

• Seems like a win!

© The Khronos® Group Inc. 2023 - Page 33This work is licensed under a Creative Commons Attribution 4.0 International License

For example

Say you’re writing an Android game…
• Targeting 3-4 years of devices, 4 GPU vendors, 12 handset OEMS
• Capability management is going to be fun!

Suppose Google says
• “if you target this profile,
you’ll reach 90% of devices”

• Seems like a win!

They already have…

Android Baseline 2021
Profile Support
January 2023

© The Khronos® Group Inc. 2023 - Page 34This work is licensed under a Creative Commons Attribution 4.0 International License

What’s Next

© The Khronos® Group Inc. 2023 - Page 35This work is licensed under a Creative Commons Attribution 4.0 International License

Ground rules for future releases (2022)

Core versions
• Must run on all devices
• Will not require new hardware
• Will provide quality-of-life / programming model features

- E.g. synchronization2, timeline semaphore, dynamic rendering, GPL, ….
• All features will be required
• Only extensions remain optional

Profile specifications
• Will describe what is (or will be) available in specific markets
• May require new hardware functionality

© The Khronos® Group Inc. 2023 - Page 36This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Roadmap Goals

Address fragmentation within market segments
• Short term: express what is common across upcoming devices
• Long term: encourage more commonality in future products

Allow a longer term, more coherent approach
• Groups of extensions that work together to solve a larger problem
• Avoid offering multiple solutions to the same problem.

© The Khronos® Group Inc. 2023 - Page 37This work is licensed under a Creative Commons Attribution 4.0 International License

The Vulkan Roadmap

What market segment?
• “immersive graphics”
• Aka “mid- to high-end devices across smartphone, tablet, laptop, console,
and desktop”

• Or, consumer devices that support an active 3rd party software market for
games and media applications

Other roadmap market segments are possible
• High-end gaming on desktop (“Vulkan Ultimate”)
• Core

© The Khronos® Group Inc. 2023 - Page 38This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap Deliverables

2022 2024

Roadmap 2022

2026 2028

1.3

Roadmap 2022 Profile
• Functionality expected in “immersive graphics” devices starting in 2022
• Every vendor in this market will have at least one product by e/o year

Vulkan 1.3
• Functionality expected in all new Vulkan devices

© The Khronos® Group Inc. 2023 - Page 39This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap Deliverables - 2024

2022 2024

Roadmap 2022 Roadmap 2024

2026 2028

1.3

Roadmap 2024 Profile
• Functionality expected in “immersive graphics” devices starting in 2024
• Every vendor in this market will have at least one product by e/o year

© The Khronos® Group Inc. 2023 - Page 40This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap Deliverables - 2024

2022 2024

Roadmap 2022 Roadmap 2024

2026 2028

1.3

No Vulkan 1.4 in 2024
• Eligible feature set is not compelling
• Value would not justify the overhead of a new major release

© The Khronos® Group Inc. 2023 - Page 41This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap Deliverables - Future

2022 2024

1.4

Roadmap 2022 Roadmap 2024

2026 2028

1.3

No Vulkan 1.4 in 2024
• Eligible feature set is not compelling
• Value would not justify the overhead of a new major release
• Will issue Vulkan 1.4 when needed – date not set

?

© The Khronos® Group Inc. 2023 - Page 42This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap Deliverables - Future

2022 2024

1.4

Roadmap 2022 Roadmap 2024 Roadmap 2026 Roadmap 2028

2026 2028

1.3

Will issue Vulkan 1.4 when it offers compelling value
• Date not set

Roadmap profiles will continue the current two-year cadence

?

© The Khronos® Group Inc. 2023 - Page 43This work is licensed under a Creative Commons Attribution 4.0 International License

What we’re working on now

2024

Roadmap 2024

2026 2028

Roadmap 2024 is ~done
• Content frozen, working on packaging / testing / tooling

© The Khronos® Group Inc. 2023 - Page 44This work is licensed under a Creative Commons Attribution 4.0 International License

What we’re working on now

2024

Roadmap 2024 Roadmap 2026

2026 2028

Roadmap 2024 is ~done
• Content frozen, working on packaging / testing / tooling

Roadmap 2026 is under active discussion
• Thinking in terms of topic areas / problems to solve

© The Khronos® Group Inc. 2023 - Page 45This work is licensed under a Creative Commons Attribution 4.0 International License

What we’re working on now

2024

Roadmap 2024 Roadmap 2026 Roadmap 2028

2026 2028

Roadmap 2024 is ~done
• Content frozen, working on packaging / testing / tooling

Roadmap 2026 is under active discussion
• Thinking in terms of topic areas / problems to solve

We’re also thinking about Roadmap 2028…

© The Khronos® Group Inc. 2023 - Page 46This work is licensed under a Creative Commons Attribution 4.0 International License

We would value your input
Got a view on what problems we should be solving?

Raise an issue at the spec repository:
https://github.com/KhronosGroup/Vulkan-Docs/

Ping us on Discord:
https://discord.com/invite/vulkan

Talk to us here / at GDC / at Vulkanised 2024…

https://github.com/KhronosGroup/Vulkan-Docs/
https://discord.com/invite/vulkan

© The Khronos® Group Inc. 2023 - Page 47This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 47This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan SDK and Ecosystem Tools

Karen Ghavam
CEO and Engineering Director

LunarG, Inc

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 48This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan SDK and Ecosystem Tools

Karen Ghavam
CEO and Engineering Director

LunarG, Inc

Today’s
Presentation:

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 49This work is licensed under a Creative Commons Attribution 4.0 International License

Who is LunarG?

• An Independent, private company with Khronos membership
- Specializing in 3D graphics software solutions for our clients

• Developing Vulkan Ecosystem components since 2015
- Generous sponsorship from Valve and Google

• Vulkan Ecosystem Projects
- Vulkan SDK
- Vulkan Loader
- Vulkan Validation Layers
- Vulkan Profiles Toolset
- Vulkan Extension Layer
- GFXReconstruct
- glslang
- …

Today’s
Presentation:

© The Khronos® Group Inc. 2023 - Page 50This work is licensed under a Creative Commons Attribution 4.0 International License

2023 Ecosystem Survey Highlights
• 275 respondents. 48.3/50.7% split between self-study/commercial developers
• Amount of released content increased from 28% to 36%
• Themes:
- Shader tool chain needs more development and maintenance

- DXC usage was 20% of population
- glslangValidator/shaderc (glsl->SPIR-V) was 60+% of the population

- Validation Layers
- Invaluable!
- Continue to increase coverage
- Error messages are very verbose and could be formatted better for easier reading
- Interpreting errors (finding my root cause) is difficult (Synchronization & GPU-AV in particular)
- Improve the performance

- Would like to have MoltenVK to move forward more quickly

Full report here

Today’s
Presentation:

https://www.lunarg.com/wp-content/uploads/2023/04/2023-Ecosystem-Survey-Public-Report-06APR2023.pdf

© The Khronos® Group Inc. 2023 - Page 51This work is licensed under a Creative Commons Attribution 4.0 International License

The Vulkan SDK (Vulkan.lunarg.com)

Delivered by LunarG in close coordination with the Khronos Vulkan working group

© The Khronos® Group Inc. 2023 - Page 52This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan SDK Download Page

© The Khronos® Group Inc. 2023 - Page 53This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan SDK Downloads are Healthy

~38,000/week ~2800/week

~5000/week

Note: Numbers are for Linux “Tarball” only and don’t include Ubuntu
packages also available from LunarG

© The Khronos® Group Inc. 2023 - Page 54This work is licensed under a Creative Commons Attribution 4.0 International License

Why Use the SDK?

• An installation process that is easy and fast
- Windows, Linux, and macOS versions

• Pre-built tools installed into the correct system locations, ready for use.
• Vetted and curated content to ensure compatibility and seamless integration
• Ready-to-use versions of the Vulkan Configurator
• SDK release notes and user documentation
• License Registry

- Details ALL of the open-source licenses present in the SDK

© The Khronos® Group Inc. 2023 - Page 55This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Configurator

• Vulkan Configurator
- Greatly simplifies experience with layer enablement and configuration!

• Multiple preset default configurations
- Ability to create your own layer configurations as well

• Recent addition: physical device selection
• Next major release preview

- Better control of the layers
- Multiple versions of a layer
- Full ordering of the layers

- Including implicit layers
- Improved UI: Tab based redesign
- Diagnostics tab driven by Vulkan loader diagnostic information

• Resources:
- Munich Vulkanise 2023:

- Using the Vulkan Configurator for Daily Vulkan Development
- Khronos Youtube Video

https://www.lunarg.com/wp-content/uploads/2023/02/Using-the-Vulkan-Configurator-VULFEB2023.pdf
https://www.youtube.com/watch?v=T0oN_H2avnI

© The Khronos® Group Inc. 2023 - Page 56This work is licensed under a Creative Commons Attribution 4.0 International License

Developer tools in the Vulkan SDK
• VK_LAYER_KHRONOS_validation - validate correct API usage

- GPU Assisted Validation
- Best Practices for

- Nvidia (new as of August 2022), ARM, Imagination, and AMD
- Synchronization Validation
- Debug Printf - “printf inside a shader”

• VK_LAYER_LUNARG_api_dump
- Ascii output of Vulkan API calls

• Vulkaninfo
- Show GPU device properties and extensions, installed layers, supported image

formats, properties…
• Emulation Layers

- VK_LAYER_KHRONOS_Synchronization2
- VK_LAYER_KHRONOS_shader_object New as of

May 2023

© The Khronos® Group Inc. 2023 - Page 57This work is licensed under a Creative Commons Attribution 4.0 International License

Validation Layer Performance Improvement
• Current Focus: Improve descriptor indexing validation performance

- Existing CPU side implementation has performance and correctness problems
- Cannot determine which descriptors are ‘dynamically used’ and therefore need validation

- Moving descriptor validation to GPU-AV
- Refactor to better scale for 1M+ descriptor arrays

- Estimate this will be ready Q3 2023
• Some past performance improvements

- Linear Memory Mapping in GPU-AV (18% to 314% improvement)
- Fine grained locking (60% to 250% improvement)

© The Khronos® Group Inc. 2023 - Page 58This work is licensed under a Creative Commons Attribution 4.0 International License

Validation Layer Performance Improvements

© The Khronos® Group Inc. 2023 - Page 59This work is licensed under a Creative Commons Attribution 4.0 International License

Synchronization Validation
• Synchronization Validation

- Identifies resource access conflicts due to incorrect synchronization operations between (draw,
copy, dispatch, blit) reading or writing the same regions of memory.
- Within a single buffer
- Within and between queue submissions, and across multiple queues

• Implementations complete with some limitations
• Current focus

- Fixing community found issues
- Performance tuning

• Resources:
- Siggraph Birds of a Feather Presentations:

- Ensure Correct Vulkan Synchronization by Using Synchronization Validation
- Khronos Youtube video

- Correct Vulkan Synchronization with Extended Synchronization Validation
- Khronos Youtube video

https://www.lunarg.com/wp-content/uploads/2021/08/Vulkan-Synchronization-SIGGRAPH-2021.pdf
https://www.youtube.com/watch?v=JvAIdtAZnAw&t=164s
https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization-validation-tutorial-and-update/
https://www.youtube.com/watch?v=9zIC1TrQM9k&t=1009s

© The Khronos® Group Inc. 2023 - Page 60This work is licensed under a Creative Commons Attribution 4.0 International License

• VOLK
- A Vulkan entry point meta-loader

• HW Capabilities Viewer from gpuinfo.org
• Vulkan Portability Solution

- Vulkan® Portability™ enables the consistent use of layered implementations
of Vulkan functionality over Metal and other APIs

- Vulkan Loader: VK_KHR_portability_enumeration
- API: VK_KHR_portability_subset
- Portability Profiles (VP_LUNARG_desktop_portability_2022)

Developer tools in the Vulkan SDK

New as of
June 2022

New as of
Oct 2022

© The Khronos® Group Inc. 2023 - Page 61This work is licensed under a Creative Commons Attribution 4.0 International License

• iOS Vulkan Loader support will be coming soon!
- Enables running the validation layers on your iOS device with your app

• All mac SDK components now support both Apple Silicon and Intel
Architectures
- No longer need Rosetta emulation environment

• Resources:
- LunarG White Paper - The state of Vulkan on Apple Devices
- Munich 2023 Vulkanise Presentation

- Vulkan Development for Apple Devices
- Khronos Youtube video

- 2023 Siggraph BoF
- Vulkan Development in Apple Environments

The macOS SDK

New in the next
LunarG SDK!

2023 Siggraph
BoF:

https://www.lunarg.com/wp-content/uploads/2022/05/The-State-of-Vulkan-on-Apple-15APR2022.pdf
https://www.lunarg.com/wp-content/uploads/2023/02/Vulkan-Development-in-Apple-Env-VULFEB2023.pdf
https://www.youtube.com/watch?v=D-tBF57XhtY
https://www.lunarg.com/news-insights/white-papers/vulkan-development-in-apple-environments-siggraph-2023/

© The Khronos® Group Inc. 2023 - Page 62This work is licensed under a Creative Commons Attribution 4.0 International License

GFXReconstruct
• Capture Vulkan API calls in a file with VK_LAYER_LUNARG_gfxreconstruct

- Replay with gfxrecon-replay
• Linux, Windows, Android
• API-agnostic; Vulkan and Direct3D 12 so far!
• Use cases

- Silicon development
- Driver quality testing
- Bug reporting
- App debugging

• Resources:
- Siggraph 2023:

- Capture & Replay with Vulkan & DX12: GFXReconstruct
- Munich Vulkanise 2023:

- GFXReconstruct- Tools to Capture and Replay Graphics API Calls
- Youtube Video

2023 Siggraph
BoF:

https://www.lunarg.com/news-insights/white-papers/capture-replay-with-vulkan-dx12-gfxreconstruct-siggraph-2023/
https://www.lunarg.com/wp-content/uploads/2023/02/GFXReconstruct-VULFEB2023.pdf
https://www.youtube.com/watch?v=XwbiKwqrqHo

© The Khronos® Group Inc. 2023 - Page 63This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Profiles

• A mechanism that enables the precise specification of capabilities
- Communication of capabilities to participants in the Vulkan ecosystem
- Easier Vulkan development for a selected range of actual ecosystem devices

Essential for Roadmap
2024

© The Khronos® Group Inc. 2023 - Page 64This work is licensed under a Creative Commons Attribution 4.0 International License

Example Profiles Usage
• Roadmap profiles: To express guidance on the future direction of Vulkan

devices
- In the SDK: VK_KHR_roadmap_2022
- Upcoming: Roadmap 2024

• Platform profiles: To express Vulkan support available on different platforms
- In the SDK:

- LunarG Desktop Baseline 2022 (Vulkan 1.1)
- LunarG Desktop Baseline 2023 (Vulkan 1.2)
- Android Baseline 2021 v2 (Vulkan 1.0)
- Android Baseline 2022 (Vulkan 1.1)

• Device Profiles: To express Vulkan support of a single Vulkan device
- Gpuinfo.org provides device profiles

• Engine Profiles: To express requirements of the rendering code path
- Prevent application from requiring unavailable features on devices

© The Khronos® Group Inc. 2023 - Page 65This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Profiles Toolset

• Profiles Schema - A JSON data format to communicate about Vulkan
capabilities
- Extensions, features, properties, formats, and queue properties
- Schema for each Vulkan API revision (KhronosGroup/Khronos-Schemas)

• VK_LAYER_KHRONOS_profiles
- Enables downgrading the Vulkan developer’s system capabilities using a Vulkan Profile

• Vulkan Profiles Library
- A header-only C++ library to use Vulkan Profiles in Vulkan applications
- Checking Profile support on a device.

- Create a vkDevice instance w/ features/extensions enabled
• The Vulkan Profiles JSON file generation

- Generate profiles file by combining multiple existing profiles
- Union and intersection of Vulkan capabilities

New as of
Aug 2022

© The Khronos® Group Inc. 2023 - Page 66This work is licensed under a Creative Commons Attribution 4.0 International License

Profiles Tutorials

• LunarG White Paper: Vulkan Profiles
• 2023 Munich Vulkanise

- Creating Vulkan Profiles
- Khronos Youtube Video

• 2022 Khronos Vulkanise
- Vulkan SDK Tools to Use and Create Vulkan Profiles
- Khronos Youtube Video

https://www.lunarg.com/wp-content/uploads/2022/03/The-Vulkan-Profiles-Toolset-Solution-FEB2022.pdf
https://www.lunarg.com/wp-content/uploads/2023/02/Creating-Vulkan-Profiles-VULFEB2023.pdf
https://www.youtube.com/watch?v=L3u7RxNL4gI&t=31s
https://www.lunarg.com/wp-content/uploads/2022/09/Vulkan-SDK-Tools-to-Use-and-Create-Vulkan-Profiles-VULSEPT2022.pdf
https://www.youtube.com/watch?v=tU3e5UNCbh0

© The Khronos® Group Inc. 2023 - Page 67This work is licensed under a Creative Commons Attribution 4.0 International License

Shader Tool Chain
• Offline executables and API libraries for:

- SPIRV-Tools
- Validator, optimizer, assembler, disassembler, diff, Remapper

- GLSL->SPIR-V
- glslang SPIR-V generator

- HLSL->SPIR-V
- Glslang SPIR-V generator (up to shader model 5)
- DXC (Microsoft DirectX Shader Compiler)

- Shaderc
- Glslang and SPIRV-Tools wrapper for better integration with build tools

- SPIRV-CROSS
- SPIR-V shaders -> HLSL/Metal/GLSL shaders

- SPIRV-Reflect
- Provides a C/C++ reflection API for SPIR-V shader bytecode

• Did you know? A really handy tool to visualize your SPIR-V
- https://www.khronos.org/spir/visualizer/

https://www.khronos.org/spir/visualizer/

© The Khronos® Group Inc. 2023 - Page 68This work is licensed under a Creative Commons Attribution 4.0 International License

Today’s
Presentation:

Vulkan demos at the LunarG table during the Networking Event

Demo 1 - Using GFXReconstruct to Capture, Replay, and Inspect an Application’s Graphics Commands

Demo 2 - Vulkan Validation on Apple Devices, a Vulkan Configurator Demo

Stop by and see our demos!

© The Khronos® Group Inc. 2023 - Page 69This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 69This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan and Open Source Graphics at Autodesk

Henrik Edström
Distinguished Architect, Graphics - Autodesk

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 70This work is licensed under a Creative Commons Attribution 4.0 International License

Safe Harbor Statement

The presentations during this event may contain forward-looking statements about our outlook, future results
and related assumptions, total addressable markets, acquisitions, products and product capabilities, and
strategies. These statements reflect our best judgment based on currently known factors. Actual events or
results could differ materially. Please refer to our SEC filings, including our most recent Form 10-K and Form
10-Q filings available at www.sec.gov, for important risks and other factors that may cause our actual results to
differ from those in our forward-looking statements.

The forward-looking statements made in these presentations are being made as of the time and date of their
live presentation. If these presentations are reviewed after the time and date of their live presentation, even if
subsequently made available by us, on our website or otherwise, these presentations may not contain current
or accurate information. We disclaim any obligation to update or revise any forward-looking statements.

Statements regarding planned or future development efforts for our products and services are not intended to
be a promise or guarantee of future availability of products, services, or features but merely reflect our current
plans and based on factors currently known to us. Purchasing decisions should not be made based upon
reliance on these statements.

PLEASE NOTE: All Autodesk content is proprietary. Please Do Not Copy, Post or Distribute without
authorization.

https://nam11.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.sec.gov%2F&data=05%7C01%7Cvicki.getty%40autodesk.com%7C8d86af3661384858b97a08da5eba2833%7C67bff79e7f914433a8e5c9252d2ddc1d%7C0%7C0%7C637926450863265090%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=YZuc%2B6Gh6hn%2BJpEXMR%2BRbTJfaWkDHCNgQ%2BRB76p4WOo%3D&reserved=0

© The Khronos® Group Inc. 2023 - Page 71This work is licensed under a Creative Commons Attribution 4.0 International License

Three Vulkan presentations from Autodesk
Vulkan Ray Tracing in Aurora:
An Open Source Real-Time Path Tracer

Mauricio Vives
Sr. Principal Engineer, Graphics

Vulkan for Cross-Platform Viewing
of Large AEC Models

Vipul Kapoor
Senior Software Engineer

Porting Autodesk Flame from
OpenGL to Vulkan

Jasmin Roy
Software Development Manager

© The Khronos® Group Inc. 2023 - Page 72This work is licensed under a Creative Commons Attribution 4.0 International License

© The Khronos® Group Inc. 2023 - Page 73This work is licensed under a Creative Commons Attribution 4.0 International License

Need a wide range of graphics capabilities

2D & Simple 3D 3D Modeling Realistic Rendering

© The Khronos® Group Inc. 2023 - Page 74This work is licensed under a Creative Commons Attribution 4.0 International License

Autodesk Graphics Platform Objectives

Modern APIs Open Standards Decoupled Architecture

OpenPBR

Available on Desktop, Mobile, and Web

© The Khronos® Group Inc. 2023 - Page 75This work is licensed under a Creative Commons Attribution 4.0 International License

Hydra for Desktop, Mobile, and Web

Scene Index / Delegate

Render Delegate HdStorm
Fast Rasterized Viewport

Custom Scene Index /
Delegate

HdAurora
Real-time Realistic Viewport

UsdImaging

HdArnold
Production Renderer

Web App

HGI

Mobile AppDesktop App

© The Khronos® Group Inc. 2023 - Page 76This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 76This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan Ray Tracing in Aurora:
An Open Source Real-Time Path Tracer

Mauricio Vives & Gareth Morgan
Sr. Principal Engineers, Autodesk

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 77This work is licensed under a Creative Commons Attribution 4.0 International License

Safe Harbor Statement

The presentations during this event may contain forward-looking statements about our outlook, future results
and related assumptions, total addressable markets, acquisitions, products and product capabilities, and
strategies. These statements reflect our best judgment based on currently known factors. Actual events or
results could differ materially. Please refer to our SEC filings, including our most recent Form 10-K and Form
10-Q filings available at www.sec.gov, for important risks and other factors that may cause our actual results to
differ from those in our forward-looking statements.

The forward-looking statements made in these presentations are being made as of the time and date of their
live presentation. If these presentations are reviewed after the time and date of their live presentation, even if
subsequently made available by us, on our website or otherwise, these presentations may not contain current
or accurate information. We disclaim any obligation to update or revise any forward-looking statements.

Statements regarding planned or future development efforts for our products and services are not intended to
be a promise or guarantee of future availability of products, services, or features but merely reflect our current
plans and based on factors currently known to us. Purchasing decisions should not be made based upon
reliance on these statements.

PLEASE NOTE: All Autodesk content is proprietary. Please Do Not Copy, Post or Distribute without
authorization.

https://nam11.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.sec.gov%2F&data=05%7C01%7Cvicki.getty%40autodesk.com%7C8d86af3661384858b97a08da5eba2833%7C67bff79e7f914433a8e5c9252d2ddc1d%7C0%7C0%7C637926450863265090%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=YZuc%2B6Gh6hn%2BJpEXMR%2BRbTJfaWkDHCNgQ%2BRB76p4WOo%3D&reserved=0

© The Khronos® Group Inc. 2023 - Page 78This work is licensed under a Creative Commons Attribution 4.0 International License

What is Aurora?
• Open source and $Free (more later)

• Path tracing renderer

• Real-time

• Physically-based

• Noise-free (optional)

• Using hardware ray tracing

• Autodesk Standard Surface w/ MaterialX

• OpenUSD Hydra render delegate

• Cross-platform + cross-vendor

• Rapid design iteration, not final frames

© The Khronos® Group Inc. 2023 - Page 79This work is licensed under a Creative Commons Attribution 4.0 International License

https://docs.google.com/file/d/1oGuWaf5agyHZm284qv6dLP7lChyzyqar/preview

© The Khronos® Group Inc. 2023 - Page 80This work is licensed under a Creative Commons Attribution 4.0 International License

Where is Aurora used?
• Shipping in Autodesk Inventor as

“GPU Ray Tracing” (one click).

• Exploring use in other products.

• Open source: anyone else can use it too!

© The Khronos® Group Inc. 2023 - Page 81This work is licensed under a Creative Commons Attribution 4.0 International License

What is hardware ray tracing?
• Graphics API support for ray tracing operations.
• May or may not be backed by actual dedicated hardware.
• Introduced with DirectX Raytracing (DXR) at GDC 2018.
• Hardware from NVIDIA followed shortly after (Turing / “RTX”).
• Now widely supported by NVIDIA, AMD, and Intel.
• … even in integrated GPUs starting with the AMD Radeon 680M.
• Here to stay! 👏

• Dedicated hardware normally handles
BVH traversal + triangle intersection.

• API introduces:
- Acceleration structures.
- Ray tracing shaders.
- Shader binding tables.
- Special commands.

© The Khronos® Group Inc. 2023 - Page 82This work is licensed under a Creative Commons Attribution 4.0 International License

What about ?
• Aurora development started with DXR support, for Inventor on Windows.
• Want Linux support for Autodesk products, so… Vulkan it is!
• Ray tracing support finalized in December 2020. 🥳
• Conceptually similar to DirectX Raytracing… and just as verbose. 😉
• https://www.khronos.org/blog/ray-tracing-in-vulkan

https://www.khronos.org/blog/ray-tracing-in-vulkan

© The Khronos® Group Inc. 2023 - Page 83This work is licensed under a Creative Commons Attribution 4.0 International License

How does Aurora support Vulkan ray tracing?
• Hgi instead of a direct integration (easier for our Hydra render delegate).
• OpenUSD > Hydra: Mix-and-match scene data and renderers.
• Hydra > Hgi: “Hydra Graphics Interface”

- Abstraction layer over graphics backends: OpenGL, Metal, Vulkan.
- Intended for Hydra render delegates, but can be used independently.
- Hgi Vulkan support is incomplete… for now. (See the next talk!)

• Don’t need all of Vulkan, just enough for ray tracing support.
• We extended the Hgi API and Vulkan backend to support ray tracing…

- Acceleration structures.
- Ray tracing shaders.
- Shader binding tables.
- Special commands.

© The Khronos® Group Inc. 2023 - Page 84This work is licensed under a Creative Commons Attribution 4.0 International License

What is in Hgi Ray Tracing?
HgiAccelerationStructure

HgiAccelerationStructureGeometry

HgiRayTracingPipeline

HgiAccelerationStructureCmds

HgiRayTracingCmds

HgiBufferUsageShaderBindingTable

… and more.
https://github.com/autodesk-forks/USD

/tree/adsk/feature/hgiraytracing

HgiShaderStageRayGen

HgiShaderStageAnyHit

HgiShaderStageClosestHit

HgiShaderStageMiss

HgiShaderStageIntersection

HgiShaderStageCallable

https://github.com/autodesk-forks/USD/tree/adsk/feature/hgiraytracing
https://github.com/autodesk-forks/USD/tree/adsk/feature/hgiraytracing

© The Khronos® Group Inc. 2023 - Page 85This work is licensed under a Creative Commons Attribution 4.0 International License

What about shader languages?
• Need both HLSL for DXR and GLSL for Vulkan.
• Don’t want to maintain two copies…
• … so we want shader language translation…
• … but need support for ray tracing concepts like TraceRay(). 🤔
• Slang to the rescue! “Making it easier to work with shaders” 🤩
• Code written in Slang (HLSL with extensions).
• Runtime Slang transpiler converts to GLSL when Vulkan backend is used

© The Khronos® Group Inc. 2023 - Page 86This work is licensed under a Creative Commons Attribution 4.0 International License

What is the Aurora architecture?

HdAurora
(render delegate)

Aurora API

DirectX
Implementation

Hgi
Implementation

Common
Utilities

Plasma
(sample app)

Hgi Vulkan
(with RT extension)

Others?

Hgi

© The Khronos® Group Inc. 2023 - Page 87This work is licensed under a Creative Commons Attribution 4.0 International License

What are the next steps?
• Address known gaps between DXR and Vulkan, Windows and Linux.

• Refactor integrator to be iterative instead of recursive.

• Denoising with NVIDIA NRD… Vulkan supported. ✔

• Upscaling with AMD FSR… Vulkan supported. ✔

• MaterialX… and OpenPBR?

Open source under Apache license… you can contribute!
https://github.com/Autodesk/Aurora

Reach out to aurora@autodesk.com

https://github.com/Autodesk/Aurora

© The Khronos® Group Inc. 2023 - Page 88This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 88This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan for Cross-Platform Viewing of Large AEC Models

Vipul Kapoor
Sr. Software Engineer, Autodesk

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 89This work is licensed under a Creative Commons Attribution 4.0 International License

Safe Harbor Statement

The presentations during this event may contain forward-looking statements about our outlook, future results
and related assumptions, total addressable markets, acquisitions, products and product capabilities, and
strategies. These statements reflect our best judgment based on currently known factors. Actual events or
results could differ materially. Please refer to our SEC filings, including our most recent Form 10-K and Form
10-Q filings available at www.sec.gov, for important risks and other factors that may cause our actual results to
differ from those in our forward-looking statements.

The forward-looking statements made in these presentations are being made as of the time and date of their
live presentation. If these presentations are reviewed after the time and date of their live presentation, even if
subsequently made available by us, on our website or otherwise, these presentations may not contain current
or accurate information. We disclaim any obligation to update or revise any forward-looking statements.

Statements regarding planned or future development efforts for our products and services are not intended to
be a promise or guarantee of future availability of products, services, or features but merely reflect our current
plans and based on factors currently known to us. Purchasing decisions should not be made based upon
reliance on these statements.

PLEASE NOTE: All Autodesk content is proprietary. Please Do Not Copy, Post or Distribute without
authorization.

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://nam11.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.sec.gov%2F&data=05%7C01%7Cvicki.getty%40autodesk.com%7C8d86af3661384858b97a08da5eba2833%7C67bff79e7f914433a8e5c9252d2ddc1d%7C0%7C0%7C637926450863265090%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=YZuc%2B6Gh6hn%2BJpEXMR%2BRbTJfaWkDHCNgQ%2BRB76p4WOo%3D&reserved=0

© The Khronos® Group Inc. 2023 - Page 90This work is licensed under a Creative Commons Attribution 4.0 International License

Presentation Agenda
• AEC Models

• Cross Platform Strategy

• Current State and Progress

• Debugging and Tools

• Community and Collaboration

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 91This work is licensed under a Creative Commons Attribution 4.0 International License

AEC Models
• Design data for Building, Infrastructure,

construction

• Optimised for Design, not Rendering

• 2D, 3D, Not texture Rich

• Asset Stats:

- File Size - Up to >100GB

- Polygon Count - Up to >1 Bil

- Mesh Count - Up to >1 Mill

• Tech Problem Statement - Draw Call, IA +
VS pressure, VMem consumption, etc

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 92This work is licensed under a Creative Commons Attribution 4.0 International License

Cross Platform Strategy
• OpenUSD and Hydra Graphics

Interface

- HgiVulkan for Windows, Linux and
Android

- HgiMetal for macOS and iOS

- HgiWebGPU for Web Platform

- HgiDx12 for exclusive Windows
Platform

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 93This work is licensed under a Creative Commons Attribution 4.0 International License

Where we are on .. Windows
• Completed HgiVulkan path for USD’s

base-material pipeline.
*Note: barring some caveats

• Stabilized the HgiVulkan backend

• Vulkan Swap-chain and Presentation
Layer (No cross-API use)

• OpenUSD Proposal PR -
https://github.com/PixarAnimationStudios/OpenUSD-pr
oposals/pull/15

• OpenUSD Implementation PR(Draft) -
https://github.com/PixarAnimationStudios/OpenUSD/p
ull/2553

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://github.com/PixarAnimationStudios/OpenUSD-proposals/pull/15
https://github.com/PixarAnimationStudios/OpenUSD-proposals/pull/15
https://github.com/PixarAnimationStudios/OpenUSD/pull/2553
https://github.com/PixarAnimationStudios/OpenUSD/pull/2553

© The Khronos® Group Inc. 2023 - Page 94This work is licensed under a Creative Commons Attribution 4.0 International License

Linux and Android
• Ported progress from Windows

• On Linux

- Clang++ 14.0, CMake 3.27

• On Android

- NDK 25.2 + Android Studio Flamingo

- OpenUSD Proposal PR -
https://github.com/PixarAnimationStudios/Open
USD-proposals/pull/17

• OpenUSD Implementation PR - Coming
Soon

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://github.com/PixarAnimationStudios/OpenUSD-proposals/pull/17
https://github.com/PixarAnimationStudios/OpenUSD-proposals/pull/17

© The Khronos® Group Inc. 2023 - Page 95This work is licensed under a Creative Commons Attribution 4.0 International License

Debugging and Tools
• Vulkan Debug and Validation Layer - “VK_LAYER_KHRONOS_validation”

• Debug Markers
- Render Targets
- Resource Buffers
- Renderpasses, Pipelines etc

• Frame Debugging Tools
- RenderDoc
- Nvidia Nsight Graphics

• Vulkan Device Simulation Layer
- Unit + Component Testing

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 96This work is licensed under a Creative Commons Attribution 4.0 International License

Community and Collaboration

• Contact Us
- Autodesk Graphics Platform Team - agp@autodesk.com

• OpenUSD Forum
- AOUSD Forum - https://forum.aousd.org/
- AOUSD Hydra Forum - https://forum.aousd.org/c/community/hydra/8

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

mailto:agp@autodesk.com
https://forum.aousd.org/
https://forum.aousd.org/c/community/hydra/8

© The Khronos® Group Inc. 2023 - Page 97This work is licensed under a Creative Commons Attribution 4.0 International License

https://docs.google.com/file/d/14MFogLgLSj1Niezh153Tz37VfBqWz7GA/preview

© The Khronos® Group Inc. 2023 - Page 98This work is licensed under a Creative Commons Attribution 4.0 International License

https://docs.google.com/file/d/15TQiw7wnQm54Nm2MGg-sl5KMsmjSh_Db/preview

© The Khronos® Group Inc. 2023 - Page 99This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2023 - Page 99This work is licensed under a Creative Commons Attribution 4.0 International License

Porting Autodesk Flame from OpenGL to Vulkan

Jasmin Roy
Software Development Manager, Autodesk

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 100This work is licensed under a Creative Commons Attribution 4.0 International License

Safe Harbor Statement

The presentations during this event may contain forward-looking statements about our outlook, future results
and related assumptions, total addressable markets, acquisitions, products and product capabilities, and
strategies. These statements reflect our best judgment based on currently known factors. Actual events or
results could differ materially. Please refer to our SEC filings, including our most recent Form 10-K and Form
10-Q filings available at www.sec.gov, for important risks and other factors that may cause our actual results to
differ from those in our forward-looking statements.

The forward-looking statements made in these presentations are being made as of the time and date of their
live presentation. If these presentations are reviewed after the time and date of their live presentation, even if
subsequently made available by us, on our website or otherwise, these presentations may not contain current
or accurate information. We disclaim any obligation to update or revise any forward-looking statements.

Statements regarding planned or future development efforts for our products and services are not intended to
be a promise or guarantee of future availability of products, services, or features but merely reflect our current
plans and based on factors currently known to us. Purchasing decisions should not be made based upon
reliance on these statements.

PLEASE NOTE: All Autodesk content is proprietary. Please Do Not Copy, Post or Distribute without
authorization.

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://nam11.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.sec.gov%2F&data=05%7C01%7Cvicki.getty%40autodesk.com%7C8d86af3661384858b97a08da5eba2833%7C67bff79e7f914433a8e5c9252d2ddc1d%7C0%7C0%7C637926450863265090%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=YZuc%2B6Gh6hn%2BJpEXMR%2BRbTJfaWkDHCNgQ%2BRB76p4WOo%3D&reserved=0

© The Khronos® Group Inc. 2023 - Page 101This work is licensed under a Creative Commons Attribution 4.0 International License

Presentation Agenda
• Autodesk Flame Overview

• Project Conversion Strategy

• Technical Challenges & Solutions

• Project Outcome

• Next Steps!

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 102This work is licensed under a Creative Commons Attribution 4.0 International License

Autodesk Flame Overview

• Proprietary 3D engine which
is optimized for real-time
artistic visual effects.

• Used for commercials, TV
episodics and features.

• Machine learning to
accelerate and assist
creative tasks.

• Used by many high-profile
artists and studios that rely
on its tools, performance
and rendering quality.

Timeline based visual effects and finishing solution

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 103This work is licensed under a Creative Commons Attribution 4.0 International License

Autodesk Flame Overview

• Proprietary 3D engine which
is optimized for real-time
artistic visual effects.

• Used for commercials, TV
episodics and features.

• Machine learning to
accelerate and assist
creative tasks.

• Used by many high-profile
artists and studios that rely
on its tools, performance
and rendering quality.

Timeline based visual effects and finishing solution

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://docs.google.com/file/d/1OM_pw-xmK0qgjDePAp511XhA-TLgg6UP/preview

© The Khronos® Group Inc. 2023 - Page 104This work is licensed under a Creative Commons Attribution 4.0 International License
Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 105This work is licensed under a Creative Commons Attribution 4.0 International License
Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

https://docs.google.com/file/d/1OM_pw-xmK0qgjDePAp511XhA-TLgg6UP/preview

© The Khronos® Group Inc. 2023 - Page 106This work is licensed under a Creative Commons Attribution 4.0 International License

Project Conversion Strategy
Highlights

• Huge Feature Set and Codebase

• Linux & Mac Platform Support

• Memory Management

• Multi-Year Project

• MoltenVK on the Mac

• Create Abstraction Layers

• Master Branch Development

• Iterative / Automation Driven Approach

Challenges Strategies

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 107This work is licensed under a Creative Commons Attribution 4.0 International License

Conversion Strategy

High Level Processing Pipeline

Iterative Approach using OpenGL / Vulkan Interop

DEGRAIN AI TOOLS 3D CREATIVE TOOLS TRACKING FINISHING

SUBSTANCE OPEN FXAI ENGINE

IMPORT MASKING CLR. MGT. EXPORT

• OpenGL / Vulkan Interoperability
Extensions

• Semaphores for Synchronization

• Support Mixed Graphics API Processing
Pipeline

• Take Advantage of 20000+ Automation
Tests Early

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 108This work is licensed under a Creative Commons Attribution 4.0 International License

Technical Challenges & Solutions
Runtime Legacy GLSL Shader Conversion

#version 120

uniform sampler2D input;

uniform vec3 slope;
uniform vec3 offset;
uniform vec3 power;

uniform float width;
uniform float height;
uniform float saturation;

void main(void)
{
 vec2 coords = gl_FragCoord.xy / vec2(width, height);
 vec3 source = texture2D(front, coords).rgb;

 vec3 slopeRGB = slope;
 vec3 offsetRGB = offset;
 vec3 powerRGB = power;

 vec3 colour = source * slopeRGB + offsetRGB;
 float luma = 0.2126 * colour.r + 0.7152 * colour.g + 0.0722 * colour.b;
 colour = luma + (saturation*0.01) * (colour-luma);

 gl_FragColor = vec4(colour, 1.0);
}
R

E
G

E
X

 C
on

ve
rte

r

#version 430

layout (location = 0) out vec4 adsk_FragColor;
layout(binding = 1) uniform UniformBlock
{
 vec3 slope;
 vec3 offset;
 vec3 power;
 float width;
 float height;
 float saturation;
};

layout(binding = 2) uniform sampler2D input;

void main(void)
{
 vec2 coords = gl_FragCoord . xy / vec2(width, height);
 vec3 source = texture(front, coords). rgb;

 vec3 slopeRGB = slope;
 vec3 offsetRGB = offset;
 vec3 powerRGB = power;

 vec3 colour = source * slopeRGB + offsetRGB;
 float luma = 0.2126 * colour . r + 0.7152 * colour . g + 0.0722 * colour . b;
 colour = luma +(saturation * 0.01)*(colour - luma);

 adsk_FragColor = vec4(colour, 1.0);
}

G
LS

La
ng

 S
P

IR
-V

 C
om

pi
le

r

GLSL 1.2 GLSL 4.30

• Matchbox Legacy GLSL Support

• Runtime Shader Converter

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 109This work is licensed under a Creative Commons Attribution 4.0 International License

Technical Challenges & Solutions
Abstraction Layer / Shader Configurator

SPIR-VShader
Reflection

Extract Uniform Reflection

UBO CPU Buffer

Module specifies
single uniform
value by name

Shader Configurator

Uniform Data

Uniform Data

Uniform Data

Uniform Data
Retrieve
Fragment UBO
CPU Buffer

• Streamline Component Conversion

• Help Distribute Work

• Reduce Lines of Code

• Using Shader Reflection

• Manage UBO Buffers

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 110This work is licensed under a Creative Commons Attribution 4.0 International License

Technical Challenges & Solutions
OpenGL Translation Layer

Custom OpenGL API

OpenGL
State Tracker

COMMAND
CONFIGURATION

LAYER

C
om

m
it

&
 T

ra
ns

la
te

• For Non-Critical Components
- User Interface
- Overlays
- Diagnostic Tools

• Help Concentrate on Critical Components

• Custom OpenGL API

• OpenGL State Tracker

• Commit & Translate to Vulkan Pipeline

OpenGL Translation Layer (State Based)

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 111This work is licensed under a Creative Commons Attribution 4.0 International License

Artist Testimonials

“It was immediately clear that the move to Vulkan brings a significant speed boost.
Flame already is the fastest and most versatile creative system out there, but this
brings things to a whole new level. This is very exciting because every creative process
benefits from iterations, and more speed allows for more iterations, thus adding to the
creative result. Vulkan should also pave the way for the addition of new and exciting
creative tools, and I can’t wait to see what’s in store next.”

Ton Habraken, VFX supervisor at SquarePXL.

“We found that most of the work we do renders faster. Some render times are faster by 50%.
The interface is snappy and overall, it feels like a huge improvement to the working
experience. I know getting Flame up to Metal was a long undertaking and I hope the user
base understands this is a huge step for the future of the product”.

Bryan Bayley, senior Flame artist and colorist at Republic Editorial.

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

http://www.squarepxl.com/

© The Khronos® Group Inc. 2023 - Page 112This work is licensed under a Creative Commons Attribution 4.0 International License

Project Outcome & Next Steps

• Performance Improvements

• Better Memory Management and
Stability

• Successful Flame 2024.1 Update

• Vulkan Sub-Passes

• Multi-Threaded Processing Pipeline

• Improved Multi GPU Support

• OpenCL / CUDA to Vulkan Compute

Outcome Next Steps

Autodesk Confidential & Proprietary Information - Please do not post, copy or distribute without authorization.

© The Khronos® Group Inc. 2023 - Page 113This work is licensed under a Creative Commons Attribution 4.0 International License © The Khronos® Group Inc. 2022 - Page 113This work is licensed under a Creative Commons Attribution 4.0 International License

Basic Ray Trace Debugging in Vulkan

Hai Nguyen
(just some guy who really likes graphics)

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2023 - Page 114This work is licensed under a Creative Commons Attribution 4.0 International License

Hai Nguyen
● Graphics Lead for XR at Google
● DirectX Shader Compiler for SPIR-V aka DXC
● SPIRV-Reflect
● Computer Graphics Enthusiast

https://github.com/microsoft/DirectXShaderCompiler
https://github.com/KhronosGroup/SPIRV-Reflect

© The Khronos® Group Inc. 2023 - Page 115This work is licensed under a Creative Commons Attribution 4.0 International License

Went from this…

UV Coordinates For Ray Generation

© The Khronos® Group Inc. 2023 - Page 116This work is licensed under a Creative Commons Attribution 4.0 International License

…to this in a couple of months. There was debugging.

Real Time Progressive PBR Path Tracer (It’s interactive!)

© The Khronos® Group Inc. 2023 - Page 117This work is licensed under a Creative Commons Attribution 4.0 International License

What We’re Discussing Today
• Who is the target audience of this talk?

- Anyone new to Vulkan ray tracing
• Primary focus of this talk is on basic debugging of Vulkans ray tracing API

- Assumes you’re somewhat familiar with Vulkan’s ray tracing
- Acceleration structures (BLAS and TLAS)
- GLSL or HLSL ray tracing data structures and functions
- Ray tracing pipeline creation

- Assumes you’re familiar with Vulkan’s descriptor management for resources
- Image and image view
- Uniform buffer / constant buffer
- Storage buffer / structured buffer

- vkCmdTraceRaysKHR is main API function we’ll cover
- Unfortunately we don’t have enough time to cover BLAS and TLAS debugging

• Will talk a bit about debugging rendered pixels

© The Khronos® Group Inc. 2023 - Page 118This work is licensed under a Creative Commons Attribution 4.0 International License

Basic Ray Tracing Debugging in Vulkan
• Two types of debugging when it comes to ray tracing

- Debugging Vulkan’s ray tracing API
- Debugging rendered pixels

• Each type has different goals but the basic approach is kind of the same
- What tools can I use for debugging?
- Show me what’s happening in my app!
- What pipeline / shader stage information can I see?
- Can I debug my shaders?
- What’s some useful tidbits to keep in mind for debugging?
- Can I examine the pixel values?
- Can I see how Vulkan interpreted my scene?
- Can I graphics printf()?
- How can I debug crashes?

© The Khronos® Group Inc. 2023 - Page 119This work is licensed under a Creative Commons Attribution 4.0 International License

Lets Answer These Questions
• Debugging Vulkan’s ray tracing API

- What tools can I use for debugging?
- Show me what’s happening in my app!
- What pipeline / shader stage information can I see?
- Can I debug my shaders?

• Debugging rendered pixels
- What’s some useful tidbits to keep in mind for debugging?
- Can I examine the pixel values?
- Can I see how Vulkan interpreted my scene?
- Can I graphics printf()?

• How can I debug crashes?

© The Khronos® Group Inc. 2023 - Page 120This work is licensed under a Creative Commons Attribution 4.0 International License

Debugging Vulkan’s ray tracing
API…using a graphics debugger

© The Khronos® Group Inc. 2023 - Page 121This work is licensed under a Creative Commons Attribution 4.0 International License

What tools can I use for debugging?
• RenderDoc does not currently support ray tracing

- Applications using ray tracing API will fail to launch
- I don’t know if or when ray tracing support will happen

• NVIDIA Nsight Graphics is the only tool that I’ve found that works (most of the time)
- Some of the next few topics will use Nsight Graphics as an example
- No, this is not a tutorial on Nsight Graphics

- Okay, maybe a little bit
- No, this is not a sponsored talk by NVIDIA
- It’s the only tool I’ve found that works - hopefully it works for you as well!

© The Khronos® Group Inc. 2023 - Page 122This work is licensed under a Creative Commons Attribution 4.0 International License

Our example ray tracing scene (Sphereflake by Eric Haines)
We’ll look at a capture of this scene over the
next few examples.
Some stuff about our Sphereflake:
• 1 RAYGEN shader
• 2 MISS shaders

- Shadowed
- Not shadowed

• 2 shaders in the hit group
- CLOSEST_HIT
- INTERSECTION

• 3 resources
- Acceleration structure
- Output image
- Buffer for sphereflake nodes

• Max recursion depth is set to 5
• 66431 spheres

- Ground is also a sphere
By the Unwritten Laws of Computer Graphics,
all ray tracing examples must include either
Sphereflake or a reflective checker floor. We’ll
go with Sphereflake.

https://erich.realtimerendering.com/rtrt/index.html
https://github.com/chaoticbob/GraphicsExperiments/blob/main/projects/raytracing/005_basic_shadow_vulkan/005_basic_shadow_vulkan.cpp

© The Khronos® Group Inc. 2023 - Page 123This work is licensed under a Creative Commons Attribution 4.0 International License

NVIDIA Nsight Graphics
Basic Nsight Graphics
capture.

Like other graphics
debuggers, Nsight has a
events, event details,
timeline, API inspection, etc

We’ll take a closer look at
some of these and see how
they’re useful for debugging
ray tracing.

© The Khronos® Group Inc. 2023 - Page 124This work is licensed under a Creative Commons Attribution 4.0 International License

Show me what’s happening in my app!
Nsight’s Event viewer lets you see the Vulkan calls and
commands in the captured frame.

Since Nsight is also a profiler, you’ll also find rough CPU and GPU
time for draw, dispatch, and ray trace commands in the Event
viewer.

These same events also appear in the Scrubber, which shows a
timeline version of the events.

In this example, the event we’re interested in is Event 17, since it’s
the call to vkCmdTraceRaysKHR().

© The Khronos® Group Inc. 2023 - Page 125This work is licensed under a Creative Commons Attribution 4.0 International License

vkCmdTraceRaysKHR Example

// As a reminder…
// shaderGroupHandleSize is the size in bytes of the shader header
// shaderGroupHandleAlignment is the required alignment in bytes for each shader binding table entry

// The device for the example below has the following properties:
// VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleSize = 32
// VkPhysicalDeviceRayTracingPipelinePropertiesKHR::shaderGroupHandleAlignment = 32

// 1 shader and no shader record data.
VkStridedDeviceAddressRegionKHR rgenSBT = {};
rgenSBT.deviceAddress = GetDeviceAddress(rgenSBTBuffer);
rgenSBT.stride = rayTracingProperties.shaderGroupHandleAlignment; // 32
rgenSBT.size = rayTracingProperties.shaderGroupHandleSize; // 32

// 2 shaders and no shader record data.
VkStridedDeviceAddressRegionKHR missSBT = {};
missSBT.deviceAddress = GetDeviceAddress(missSBTBuffer);
missSBT.stride = rayTracingProperties.shaderGroupHandleAlignment; // 32
missSBT.size = 2 * rayTracingProperties.shaderGroupHandleSize; // 64

// 2 shader and 1 shader record parameter.
// Add 8 bytes for buffer in shader record.
// Align both stride and size to shaderGroupHandleAlignment.
//
// NOTE: If shader record parameter was absent, this would look like the other two SBTs.
//
VkStridedDeviceAddressRegionKHR hitgSBT = {};
hitgSBT.deviceAddress = GetDeviceAddress(&hitgSBTBuffer);
hitgSBT.stride = Align(alignedHandleSize + 8, rayTracingProperties.shaderGroupHandleAlignment); // 64
hitgSBT.size = Align(alignedHandleSize + 8, rayTracingProperties.shaderGroupHandleAlignment); // 64

// Nothing for callable SBT
VkStridedDeviceAddressRegionKHR callableSBT = {};

vkCmdTraceRaysKHR(cmdBuf, &rgenSBT, &missSBT, &hitgSBT, &callableSBT, imageWidth, imageHeight, 1);

🌠Will Usher has a pretty cool SBT visualizer here🌠:
https://www.willusher.io/graphics/2019/11/20/the-sbt-three-ways

https://www.willusher.io/graphics/2019/11/20/the-sbt-three-ways

© The Khronos® Group Inc. 2023 - Page 126This work is licensed under a Creative Commons Attribution 4.0 International License

What does vkCmdTraceRaysKHR look like in the debugger?
The Events Details, as well as the tool tip over
function calls, shows what was passed into
vkCmdTraceRaysKHR().

For debugging purposes, the Events Details
lets you see the deviceAddress, stride, and
size of what was passed in.

Keep in mind that if Nsight is able to capture a
frame, it doesn’t mean that the values are
100% correct. It just means that they work
well enough not to cause a crash. If the ray
tracing output isn’t what you expect, this is
another place you can look at to see if there’s
an error.

The validation layers should catch any
egregious errors in stride and size. If
validation is off or fails to catch the error, the
application might crash.

© The Khronos® Group Inc. 2023 - Page 127This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see?
API Inspector allows examination of
the ray tracing pipeline, shader
stages, shader groups, descriptor
information, etc.

GLSL based shaders will have main
as the entry point for all stages.
Maybe one day we can have more
descriptive entry point names😁

Shader groups shows the indices for
the shader stages they reference. Hit
group shows CLOSEST_HIT and
INTERSECTION shaders since this
example is ray tracing procedurals.

If you need to check the indices for
the pipeline’s shader groups, here’s
where to do it.

© The Khronos® Group Inc. 2023 - Page 128This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see?
Descriptor information shows there
are 3 resources bound to this
pipeline and to which stages these
resources are visible.

Max recursion depth isn’t visible
from here but you can see it in
Object Browser by clicking on the
pipeline.

It would be mighty useful if Nsight
could grab the variable names for
the resources - using some type of
SPIRV-Reflect.

https://github.com/KhronosGroup/SPIRV-Reflect

© The Khronos® Group Inc. 2023 - Page 129This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see? (HLSL)
Lets take a look at an HLSL based pipeline too.

HLSL based shaders will have the target entry
points listed for each stage.

Hit group here, shows only closest hit since this
example is ray tracing triangles.

Descriptor type for binding 12 shows
COMBINED_IMAGE_SAMPLER. While this
information is correct, it’s not what we want since
HLSL doesn’t easily support
COMBINED_IMAGE_SAMPLER for Vulkan.

In this case, it turned out to be a bug in the
sample with the descriptor type and also the
descriptor buffer location. By some weird
coincidence it just happened to work.

Again, it would be mighty useful if Nsight could
grab the variable names for the resources - using
some type of SPIRV-Reflect. When there’s more
than a few resources, it can get a bit difficult to
remember exactly which is at which set/binding.

🐞PR of bug fix🐞
https://github.com/chaoticbob/GraphicsExperiments/pull/43

https://github.com/KhronosGroup/SPIRV-Reflect
https://github.com/chaoticbob/GraphicsExperiments/pull/43

© The Khronos® Group Inc. 2023 - Page 130This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see?
Ray Generation Shaders

Shader Module object is visible in all
shader stages.

Clicking on the shader module will show
the source for the shader. More on this
in a moment.

Output image(s) are visible in this view.
Clicking on an image shows the results
for the current vkCmdTrayceRaysKHR
call.

No data in the shader record for this
stage.

It would be mighty useful to see the
entry point(s) here as well.

© The Khronos® Group Inc. 2023 - Page 131This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see?
Miss Shaders

Two MISS shaders in this pipeline.
One for primary rays and the other
for shadow.

Like other stages, SBT stride is
visible.

Clicking on the shader module will
show the source for the shader.

No data in the shader record data
for shaders in MISS stage.

It would be mighty useful to see the
entry point(s) here as well.

© The Khronos® Group Inc. 2023 - Page 132This work is licensed under a Creative Commons Attribution 4.0 International License

What pipeline / shader stage information can I see?
Hit Shaders
This hit group has CLOSESET_HIT shader and
INTERSECTION shader since we’re tracing procedurals.

Finally there’s something in the shader record data! The
INTERSECTION shader access a storage buffer that
stores the bounding boxes for each node of the sphere
flake. It uses gl_PrimitiveID to look up which node.

Key takeaway is that you can use these views to check
the shaders and shader record data, and shader source,
coming up next.

Don’t get too excited about being able to click the
resource in the shader record though. Clicking on the
buffer in the shader record opens up a data view that’s a
bit hard to navigate. For the buffer in the shader record, it
seems to interpret the size of the shader record data as
the buffer size.

It would be mighty useful to see the entry point(s) here
as well.

© The Khronos® Group Inc. 2023 - Page 133This work is licensed under a Creative Commons Attribution 4.0 International License

Can I debug my shaders?
Not in a way that you can step
through it as you do a C/C++
program.

You can view the shader source as
SPIR-V or GLSL cross compiled
using SPIRV-Cross. HLSL cross
compile didn’t work for me.

This allows you to verify the shaders
in each group are the ones that are
suppose to be there.

Even if the original shader is in HLSL,
it can still be helpful to see the code
as GLSL. At very least you can verify
it the logic matches the original
shader so it’s the correct shader.

Wrong shaders do wrong things.

© The Khronos® Group Inc. 2023 - Page 134This work is licensed under a Creative Commons Attribution 4.0 International License

In place edit of a MISS shader
Like other graphics debuggers,
Nsight lets you in place edit a
shader in ray tracing pipelines.

Lets change the payload color of
a MISS shader from its original
value to yellow.

Keep in mind that this is a very
simple and small program,
results from larger and more
complex applications may vary.

Even with the above caveat,
pretty neat feature to have for
debugging.

This feature was not available in
the D3D12 mode for me.

© The Khronos® Group Inc. 2023 - Page 135This work is licensed under a Creative Commons Attribution 4.0 International License

Debugging rendered pixels

© The Khronos® Group Inc. 2023 - Page 136This work is licensed under a Creative Commons Attribution 4.0 International License

What’s some useful tidbits to keep in mind for debugging?
• Make it easy to enable Vulkan Validation Layers
• Coordinate system of output image is (0, 0) Upper Left

- True for both Vulkan and D3D12
- As a result, RAYGEN shaders often have some version of d.y=-d.y

• Most Vulkan swapchain implementations support STORAGE_IMAGE
- This means you can write ray traced output to swapchain images
- Remember to note the swapchain image format if you’re planning to copy it back to CPU

• Using HLSL makes it easier to go to D3D12 for second opinion
• Note the conventions that you program uses

- Left hand or right hand 3D coordinate system
- Shading done in world space, view space, or object space
- Triangle winding order
- Pre or post matrix multiplication order

• Have graphics printf() shaders ready to go
• Max Recursion Depth

- NVIDIA = 31
- AMD = 1
- Intel = ??? (sorry, I don’t have access to an Intel GPU)

• Remember that this real time ray tracing
- You can add real time debugging utilities the same way you would a raster graphics program

© The Khronos® Group Inc. 2023 - Page 137This work is licensed under a Creative Commons Attribution 4.0 International License

Can I examine the pixel values?
Nsight’s resource viewer lets you click
to view pixel values in decimal
floating point or hex integer. There
doesn’t seem to be a setting for
decimal integer.

Like other graphics debugging tools,
there’s channel selector in case you
want view particular channels.

A histogram (not pictured) is available
by clicking on the graph button next
to the Configure button on the right.

Lower panel left shows the properties
of the image you’re viewing.

Nsight calls this the Graphical view of
the image.

© The Khronos® Group Inc. 2023 - Page 138This work is licensed under a Creative Commons Attribution 4.0 International License

Can I examine the pixel values?
Additionally, there is also the
Memory view of the image.

In this mode, you can select
between Address or Index for the
Axis. This flips between memory
address and indices for the first
column.

There’s no pixel coordinate mode
for Axis, so you’ll need to do a
little math to figure out which
address or index refers to a pixel
at particular (x,y).

Keep your calculator handy.

© The Khronos® Group Inc. 2023 - Page 139This work is licensed under a Creative Commons Attribution 4.0 International License

Can I examine the pixel values?
Alternatively, one can rig up a custom
solution with ImGui:

• Copy the image front the GPU
to CPU

• Determine pixel coordinates
from mouse event(s)

• Read values from CPU image
• Update ImGui color values

- Visualize color with
color picker

Brad Loos was nice enough to do just
this to one of the existing samples.

https://github.com/chaoticbob/GraphicsExperiments/tree/main/projects/raytracing/030_raytracing_path_trace_vulkan_bof
https://github.com/chaoticbob/GraphicsExperiments/tree/main/projects/raytracing/030_raytracing_path_trace_vulkan_bof

© The Khronos® Group Inc. 2023 - Page 140This work is licensed under a Creative Commons Attribution 4.0 International License

Can I see how Vulkan interpreted my scene?
Sort of using graphics printf()
techniques - more on this next but
before that…

Nsight’s D3D12 mode has an
Acceleration Structure Details view that
visualizes the scene for a
DispatchRays call. PIX also has a
similar feature.

This is an incredibly useful debugging
feature to have help developers see how
the API interpreted the scene based on
the data provided by the application.

This visualization lets the developers
know if their geometry, instances, and
acceleration structure setups are
correct. Or at the very least , what the
developer was expecting.

© The Khronos® Group Inc. 2023 - Page 141This work is licensed under a Creative Commons Attribution 4.0 International License

Can I graphics printf()?
Short of having a debugger with scene visualization, we have
to resort to more tried and true techniques of computer
science: printf().

In the case of graphics, we print/write colors instead of
variable values. Although, it’s possible to printf() too - but
that’s beyond the scope of this presentation.

This image shows the most basic version of a ray tracing
printf() using red for misses and blue for hits:

[shader("miss")]

void MyMissShader(inout RayPayload payload)

{

 payload.color = float4(1, 0, 0, 1);

}

[shader("closesthit")]

void MyClosestHitShader(inout RayPayload payload, in MyAttributes attr)

{

 payload.color = float4(0, 0, 0, 1);

}

© The Khronos® Group Inc. 2023 - Page 142This work is licensed under a Creative Commons Attribution 4.0 International License

Can I graphics printf()?
If it’s necessary to see some separation in the objects,
barycentrics or hit position is helpful.

This shader writes out the barycentric values for each
intersection with TRIANGLE geometry:

[shader("closesthit")]
void MyClosestHitShader(inout RayPayload payload, in MyAttributes attr)
{
 float3 bc = float3(1 - attr.barycentrics.x - attr.barycentrics.y,
 attr.barycentrics.x,
 attr.barycentrics.y);
 payload.color = float4(bc, 1);
}

Barycentrics and hit position (in world space) can be derived
without needing access to vertex attribute data. This makes it
quick and easy to do without additional setup.

You can also use instance or primitive indices with a little
more math.

© The Khronos® Group Inc. 2023 - Page 143This work is licensed under a Creative Commons Attribution 4.0 International License

Can I graphics printf()?
Normals or material properties can also be useful depending on what you’re
looking to debug. This approach may seem a bit adhoc, but having suite of
copy/paste shaders ready-to-go for debugging can make life in Vulkan ray
tracing a bit easier.
Sometimes, a copy/paste might be quicker than fighting with a graphics
debugger😲
However, if you’re already setup in the debugger (such as Nsight) - you can just
copy/paste the shaders and see results immediately using the shader edit
feature. Just make sure your ready-to-go shaders are in GLSL.
Some ideas for ready-to-go printf shaders:
• Color valuesfor hit and miss shaders
• Barycentrics

- Not available with PROCEDURAL geometry
• Hit position
• Hit distance

- May need to normalize using near/far and scale afterwards for better
visualization

• Instance / primitive IDs
• Vertex attributes (assuming these are accessible)

- Positions
- Normals
- Texture coordinates

• Material properties
- Base color
- Roughness
- Metallic

© The Khronos® Group Inc. 2023 - Page 144This work is licensed under a Creative Commons Attribution 4.0 International License

Something looks off…sometimes a second opinion is helpful
Top image is Vulkan
Bottom image is D3D12

This is a super simple Gouraud shader:
 // Lambert shading
 float3 lightPos = float3(2, 5, 5);
 float3 L = normalize(lightPos - hitPosition);
 float d = 0.8 * saturate(dot(L, N));
 float a = 0.2;
 // Multiply diffuse + ambient by material color
 float3 color = (float3)(d + a) * Materials[geoIdx];

Red cube’s color is a bit off in Vulkan version due to a bug in the
HLSL and C++ code:
 // HLSL
 StructuredBuffer<Triangle> Triangles[2] : register(t4); // Index buffers
 StructuredBuffer<float3> Positions[2] : register(t7); // Position buffers
 StructuredBuffer<float3> Normals[2] : register(t10); // Normal buffers
 // C++
 binding.descriptorCount = 2;

The 2 is supposed to be a 3 since there are 3 objects in the scene.
HLSL code is shared by both APIs, but D3D12 was a lot more
forgiving about the bug than Vulkan.

🐞PR for bug fix🐞:
https://github.com/chaoticbob/GraphicsExperiments/pull/40

https://github.com/chaoticbob/GraphicsExperiments/pull/40

© The Khronos® Group Inc. 2023 - Page 145This work is licensed under a Creative Commons Attribution 4.0 International License

How can I debug crashes?

Debugging Vulkan’s ray tracing API…by thinking very
hard.

© The Khronos® Group Inc. 2023 - Page 146This work is licensed under a Creative Commons Attribution 4.0 International License

Debugging crashes
Lets break crashes down into two categories
1. Crashes before ray tracing starts
2. Crashes while ray tracing

Short of a driver bug, both categories of crashes are most likely invalid access or
invalid API usage.

Where you start the investigation is what differentiates them.

Lets take a very quick look at some starting points for each case.

© The Khronos® Group Inc. 2023 - Page 147This work is licensed under a Creative Commons Attribution 4.0 International License

Crashes before ray tracing starts
• Vulkan’s Validation Layers can help!
• If a crash occurs while building acceleration structures (1/2)

- Check the geometry setup
- Device addresses, strides, vertex format, etc.

- Did vkGetAccelerationStructureBuildSizesKHR return an error?
- Does the argument for pBuildInfo have the correct information?

- Is geometryCount correct?
- Is pGeometries not NULL?

- Are values in the pMaxPrimitiveCounts array argument correct?
- pMaxPrimitiveCounts can be a bit confusing at first, but it’s an array of the number of

triangles or AABBs you have in each pBuildInfo->pGeometries entry.
- For example, if you have 3 geometry entries that are all triangles and they have 3, 4, 5 triangles

respectively then:
- pBuildInfo->geometyCount = 3

- pBuildInfo->pGeometry would point to an array containing 3 VkAccelerationStructureGeometryKHR filled
out with buffer device address, vertex, index information corresinding the number of triangles

- pGeometries would point to an array containing [3, 4, 5]

© The Khronos® Group Inc. 2023 - Page 148This work is licensed under a Creative Commons Attribution 4.0 International License

Crashes before ray tracing starts
• If a crash occurs while building acceleration structures (2/2)

- Does the build size information returned by vkGetAccelerationStructureBuildSizesKHR
make sense?

- Does the scratch buffer size make sense?
- Does the acceleration structure size make sense?

- Has memory been allocated and bound to the buffer objects for the scratch buffer and
acceleration structure?

- Did vkCreateAccelerationStructureKHR return an error?
- All the information in the create info valid?

- Does the build geometry info for vkCmdBuildAccelerationStructuresKHR matches what
was passed to vkGetAccelerationStructureBuildSizesKHR?

- Is the data in arguments for pInfos and ppBuildRangeInfos correct?
- Did you wait for the GPU to finish processing the command buffer that’s building the acceleration

structure?
- In the case of TLAS, is the device addresses for the BLASes correct?

© The Khronos® Group Inc. 2023 - Page 149This work is licensed under a Creative Commons Attribution 4.0 International License

Crashes while ray tracing
• Vulkan’s Validation Layers can also help here!
• Check pipeline shader group shader stage indices
• Revisit our old friend vkCmdTraceRaysKHR

- Are the device addresses, strides, and sizes for the SBTs correct?
- Are argument values for width, height, and depth correct?

• Check the same things that you would check in a raster program
- Pipeline creation parameters
- Descriptor set layout configurations

• Do all the resources used by the shader have actually resources bound?
- Vulkan Validation Layer should catch this case, but it never hurt sto double check

• Try moving buffer and parameters in the shader records to global descriptors and/or push constants
- Especially if you’re using descriptor buffers and the buffer in the shader record refers to a bindless

resource
- As of this presentation, descriptor buffers is still somewhat new and not all drivers have been thoroughly

battle tested with program that use them

© The Khronos® Group Inc. 2023 - Page 150This work is licensed under a Creative Commons Attribution 4.0 International License

Crashes while ray tracing
• Try simplifying the ray tracing pipeline to track down which stage could be causing the crash

- Simplify RAYGEN shader so it just writes out the UV coordinate for the pixel to the output image
- Simplify the MISS and HIT shaders to write out colors
- Simplify INTERSECTION shaders to always return true or false
- Bring back resource access one by one for each shader stage to see if there’s an invalid resource access

- In most cases you can just read from a resource and write to the payload so that value gets written out
to the output.

- This doesn’t produce anything meaningful visually but it prevents the compiler from Dead Code
Eliminating (DCE) the resource access.

• It’s unlikely that a shader arithmetic operations can cause a crash
- But it’s possible that the HLL shader compiler or the driver shader compiler might have a bug.
- If you have a large shader and suspect a crash might be somewhere in its code

- Try the tried-and-true method of commenting out code and slowly reintroducing it.
• For large command buffers

- Might be worth investigating a buffer marking extension
- Or a tool like NVIDIA’s AfterMath to track down exactly which vkCmdTraceRaysKHR call could be causing

the crash

© The Khronos® Group Inc. 2023 - Page 151This work is licensed under a Creative Commons Attribution 4.0 International License

Unsolicited Feedback
Nsight is definitely useful for Vulkan ray trace debugging…but some small quality of life changes would be great…or
maybe just some explanation of why somethings work the way they do.

• API Inspector in D3D12 offers a bit richer information about the pipeline than than the Vulkan version
- Such as Shader names and offsets in the table

• Descriptor Layout view should show the variable names for the resource from the SPIR-V
- SPIRV-Reflect and libraries like it offers extensive information about the descriptors that would be useful to see in

the debugger
- Buffer offsets, member data types, etc
- Am sure you’re aware, just a friendly reminder 😁

• Acceleration Structure Details view would be awesome to have for Vulkan
- This would be immensely helpful with understanding how Vulkan interpreted the BLAS/TLAS data

• When some of the windows are undocked, they seem to be mildly obsessive about their sizing
- Object Browser and Resource viewer do not remember their size and opens up to some ridiculously obtrusive size

• Max recursion depth should be visible without needing to inspect the properties in the Object Browser
• Resource viewer should be able to show buffer data passed into via shader record correctly

- This works as expected in D3D12 mode
• Auto data formatting of data in buffers would be nice

- Data layouts of the buffer can also be determined via SPIRV-Reflect or other reflection libraries

https://github.com/KhronosGroup/SPIRV-Reflect

© The Khronos® Group Inc. 2023 - Page 152This work is licensed under a Creative Commons Attribution 4.0 International License

Thank You! + Resources
• Thanks to the following folks for their help on this ray tracing journey

- Brad Loos
- Matt Pettineo
- Tobias Hector

• Resources
- Eric Haines’ Sphereflake:

- https://erich.realtimerendering.com/rtrt/index.html
- Will Usher’s awesome blog post on SBTs with visualizer:

- https://www.willusher.io/graphics/2019/11/20/the-sbt-three-ways
- Images used in this presentation are from samples that can be found here:

- https://github.com/chaoticbob/GraphicsExperiments
- Collection of graphics samples done in Vulkan, D3D12, and Metal
- Computer graphics is fun!

https://erich.realtimerendering.com/rtrt/index.html
https://www.willusher.io/graphics/2019/11/20/the-sbt-three-ways
https://github.com/chaoticbob/GraphicsExperiments

