
© 2024 SIGGRAPH. ALL RIGHTS RESERVED.

CAROLINE LACHANSKI

PIXAR ANIMATION STUDIOS

CLACHANSKI@PIXAR.COM

HYDRA GRAPHICS

INTERFACE
TOM CAUCHOIS

PIXAR ANIMATION STUDIOS

TCAUCHOIS@PIXAR.COM

mailto:clachanski@pixar.com
mailto:tcauchois@pixar.com

© 2024 PIXAR. ALL RIGHTS RESERVED.

HYDRA GRAPHICS INTERFACE (HGI)

• Hydra originally an OpenGL-based renderer

• Meant as ground truth visualization for USD

• OpenGL render delegate component became Storm

• Used in apps like usdview and Presto

• Hgi is graphics API abstraction layer

- HgiGL currently used internally

- HgiMetal result of collaboration with Apple

- HgiVulkan now the focus

• Pixar goal to shift from OpenGL to Vulkan internally

• How to write renderer independent of graphics API without

disrupting users?

Storm render delegate (HdSt)

Hydra (Hd)

Hgi

Metal

© 2024 PIXAR. ALL RIGHTS RESERVED.

TRANSITIONING TO HGI

• Storm written with OpenGL in mind, Hgi written with modern APIs in mind

• OpenGL state machine to explicit pipeline

- HgiVulkan: commands are recorded in command buffer → command buffer is submitted

- HgiGL: functions are accumulated in stack → GL state captured → functions (GL calls) called → GL state

restored

• Lingering GL code and GL concepts

• Vulkan validation layers

HgiGLOpsFn

HgiGLOps::SetViewport(GfVec4i const& vp)

{

return [vp] {

glViewport(vp[0], vp[1], vp[2], vp[3]);

};

}

© 2024 PIXAR. ALL RIGHTS RESERVED.

COORDINATE SYSTEM DIFFERENCES

• Had to deal with Vulkan coordinate systems

- Storm uses OpenGL-style projection matrix, assumes bottom-left origin for viewport

• Originally set negative height for Vulkan viewport

• But with this, also needed to:

- Negate shader dFdy results

- Change gl_FragCoord.y to (1 - gl_FragCoord.y)

- Change how we sampled from AOVs in the shader

- NOT flip image when writing to disk

• Ended up using OpenGL-style projection matrix with non-negative viewport, but flipping the winding order

- Resulting image is upside down, which works well in our system

- Only extra work is to flip the image vertically during interop

© 2024 PIXAR. ALL RIGHTS RESERVED.

GLSLFX

• GLSLFX is domain language for defining shader pipelines in Storm

- Defines imports, configurations, and shading code snippets

Multiple shader snippets

Instancing

transformation

Flat normals

Back face

culling

Shading and

lighting

Selection

handling

Main function

Completed fragment shader

Assembled at runtime fragment.glsl

© 2024 PIXAR. ALL RIGHTS RESERVED.

HOW TO WRITE SHADER RESOURCES?

• GLSL is original shading language of choice

• Shader resources originally hardcoded in shader snippets

- Shader stage inputs and outputs

- Texture and data buffer declarations

- Interpolation modifiers

- Location and binding indices

- Other layout qualifiers (e.g. “early_fragment_tests” for the FS)

• Wanted shader language-independent way of declaring shader’s resources and resource layout

© 2024 PIXAR. ALL RIGHTS RESERVED.

SHADER RESOURCE LAYOUTS

• Extended GLSLFX to include “layout” section

• Corresponds to “glsl” section of same name

• Processed at runtime to fill descriptors, which are processed by shadergen to produce shading code

-

-- glsl Mesh.Vertex

out VertexData

{

vec4 Peye;

vec3 Neye;

} outData;

void main(void)

{

outData.Peye = [. . .];

outData.Neye = [. . .];

gl_Position = vec4(GetProjectionMatrix() * outData.Peye);

}

Before resource layouts With resource layouts

--

-- layout Mesh.Vertex

[

["out block", "VertexData", "outData",

["vec4", "Peye"],

["vec3", "Neye"]

]

]

-- glsl Mesh.Vertex

void main(void)

{

outData.Peye = [. . .];

outData.Neye = [. . .];

gl_Position = vec4(GetProjectionMatrix() * outData.Peye);

}

© 2024 PIXAR. ALL RIGHTS RESERVED.

SHADER GENERATION

• API-specific shader creation is handled with Hgi

shadergen system

• Set of classes that generate API-specific shading code

• Fed by descriptors:

- HgiShaderFunctionTextureDesc,

HgiShaderFunctionBufferDesc,

HgiShaderFunctionFragmentDesc, etc.

• Behind abstraction layer, we can deal with resource

declaration, builtin function and keyword name

differences, extension names, etc.

struct HgiShaderFunctionTextureDesc

{

std::string nameInShader;

uint32_t dimensions;

uint32_t bindIndex;

size_t arraySize;

bool writable;

. . .

};

© 2024 PIXAR. ALL RIGHTS RESERVED.

SHADER GENERATION EXAMPLE

• OpenGL GLSL builtin vertex stage input variables

gl_VertexID and gl_InstanceID

• Vulkan GLSL extension replaces* those with

gl_VertexIndex and gl_InstanceIndex

• We want shader writers to be able to use these variables

without having to think about the backend differences

• Map variables “hd_VertexID” and “hd_InstanceID” to a

non-backend-specific role

• Each backend’s shadergen emits code defining

hd_VertexID and hd_InstanceID to correct thing

uint hd_VertexID[[vertex_id]],

uint hd_InstanceID[[instance_id]],

Metal shading language:

uint hd_VertexID = gl_VertexId;

uint hd_InstanceID = gl_InstanceId;

uint hd_VertexID = gl_VertexIndex;

uint hd_InstanceID = gl_InstanceIndex;

OpenGL GLSL:

Vulkan GLSL:

© 2024 PIXAR. ALL RIGHTS RESERVED.

HGIVULKAN SCREENSHOTS

© 2024 PIXAR. ALL RIGHTS RESERVED.

	Slide 1: Hydra Graphics Interface
	Slide 2: Hydra Graphics Interface (HGI)
	Slide 3: Transitioning to Hgi
	Slide 4: Coordinate System Differences
	Slide 5: GLSLFX
	Slide 6: How to write shader resources?
	Slide 7: Shader Resource Layouts
	Slide 8: Shader Generation
	Slide 9: Shader Generation Example
	Slide 10: HgiVulkan Screenshots
	Slide 11

