
1 | PAGE
NEXT SLIDE

Evolve

2 | PAGE 2 | PAGE

● Applied Research and Development
○ Founded in 2019 by Jasper Bekkers
○ Located in Breda, The Netherlands

● Research
○ Try to run ahead of the industry to prove out

concepts
○ Nimble codebase

● Benchmarking
○ Working with device manufacturers
○ Cutting edge features

● Collaborations
○ Strong university ties
○ Game industry background & veterans

● Sharing
○ Publish at conferences
○ Open source contributions
○ Host and attend meetups

Introduction

Traverse Research

3 | PAGE

development

Together with software and hardware
vendors we can help to build out and

optimize their GPU drivers.

We provide direct services for workload
generation, pre-/post-silicon validation and

performance evaluation.

Expertise

Excellence

GPU benchmarking

We’re developing a GPU
benchmarking suite called “Evolve”
that will focus in various graphics

workloads

2024

Evolve

Graphics research

Long and short term rendering research that
has a primary focus on Ray Tracing and

Machine Learning.

Framework built from the ground up for
prototyping and developing forward looking

graphics.

Ray tracing, path tracing, volumetrics, machine
learning inference and training.

High paced R&D

Impact and longevity

Tree pillars

4 | PAGE

Evolve

● Vulkan + DirectX12 + Metal
● Ray tracing
● Path Tracing
● Complex scene
● Dynamic lighting
● Ray Query and Ray Pipeline

based implementations of all
techniques

01. WHAT IS EVOLVE

Modern gpu benchmarking of new
workloads.

02. WHY EVOLVE

Breakthrough & Innovation

● Scores for various workloads
● Open core
● Community
● Core features of Evolve and Breda framework
● Quality assurance
● Game developer backgrounds
● Realistic workloads

5 | PAGE

Raytracing
Showcase

5 | PAGE

Desktop
Desktop will release on all ray tracing
capable devices

Lush vegetation
The point of this demo is to show
how we can render (animated)
vegetation really well. We’ll need to
test with alpha testing vs mesh geo

Path tracing
We’ll render this scene with various
rendering algorithms, we have two
path tracers and a hybrid renderer

Hybrid renderer
We’ve set up a state of the art hybrid
renderer; designed from the ground

up to support both RayQuery and
Pipeline based ray tracing

On mobile platforms
Android is first class supported, just
due to its extremely heavy workload,
real-time performance is expected
only on high-end devices.

6 | PAGE

Our high-level scores include;
- Acceleration structure
- Ray Tracing
- Rasterization
- Compute
- Energy consumption
- Driver overhead

Scores for various
workloads

What makes EVOLVE different from other
benchmarks that exist on the market

Instead of just giving an overall score
EVOLVE can bring you more tailored and more
practical scores

Breakthrough & Innovation

7 | PAGE

Measure more
Show and share detailed information about TLAS /
BLAS performance, trace performance etc

01.

Educate our audience
We’ll need to educate our users about what all the
statistics mean in laymans terms and we’ll work
with press to get this information right

02.stats for nerds
Leaderboards
For our end-users we’ll have leaderboards
that can be sorted and segmented. In app
we’ll award users their scores as well

03.

8 | PAGE

9 | PAGE

Path tracer
Wavefront-style path tracer with support for both ray-queries
and pipeline traces. Optional recursive pipeline path tracer.

01.

Hybrid renderer
RT Global illumination, RT Reflections, RT Shadows as
well as a fitted material model.

02.

Flexible Engine
Default usage of a render graph, enabling quick iteration
times while remaining efficient. Breda guarantees
resource lifetimes outlive the GPU timeline; no explicit
syncing or lifetime management is needed.

03.

Core features

Development
All code is written in Rust. Shaders are written in HLSL
and are identical code-wise between graphics APIs.

04.

10 | PAGE

- Both ray-queries and pipeline tracing are available
- Wavefront style path tracer
- Pipeline style recursive path tracer
- Radiance caching

Path tracer

Path tracer features

11 | PAGE

- Clipmap irradiance cache
- Hash grid radiance cache
- Neural radiance cache

Hybrid renderer

Caches

12 | PAGE

- ReSTIR based dynamic GI
- ReSTIR based Reflections
- RT Refraction
- RT Soft shadows
- Fitted conductor materials

Hybrid renderer

Hybrid renderer features

13 | PAGE

Engine & Development

- Very small amount of code
- No explicit resource/pass syncing
- Optimal barriers and grouping is handled internally
- Resources are guaranteed to outlive GPU timeline

Workload setup

14 | PAGE

Engine & Development

Resources & Bindless

15 | PAGE

Engine & Development

- Resources are abstracted
- Flexible usage
- Aimed to work for all APIs
- No API specific user code
- ResourceDescriptorHeap abstraction for
vulkan

Shader abstraction

16 | PAGE

Engine & Development

emulation struct

Predeclared resource identifiers

17 | PAGE

Engine & Development

- Load any resource from a buffer
- Robust bindless resource usage validation
- Resource lifetime validation
- Built-in breadcrumbs system
- Runtime shader printing/asserts

Shader development

18 | PAGE

Engine & Development
Version mismatch failure

Resource type mismatch

writability failure

19 | PAGE

Breda framework
Foundation of evolve

19 | PAGE

Enjoy unprecedented ease of
build, use, and code retrieval

- Breda will be fully open source under
a permissive license

- 100% source code and assets
become available to licensees.

 - Easy cross-platform builds due to
our usage of Rust and Cargo

20 | PAGE

- Cross-Platform Support: Windows, Android, Linux,
SteamOS/SteamDeck, and upcoming support for MacOS and iOS.
- Hardware Ray Tracing
- Efficient GPU Utilization
- Render Graph System
- Written by industry experts
- Raytracing natively on Galaxy S23 and S24, Mali, and Qualcomm
mobile GPUs as well as Nvidia, Amd and Intel

Core Features of Evolve
and Breda Framework
Performance and Compatibility

- GPU Skinning Animation System Dynamic Elements & TLAS/BLAS
- Alpha Testing/Vegetation Rendering
- Large scale raytraced crowd rendering
- Deterministic from run to run

Animation and Dynamic Elements

21 | PAGE

After ray tracing hardware got introduced, it was quite evident that building
and maintaining acceleration structures became feasible for solid
geometry.

We’ve focussed research on acceleration structures for volumes, light
transport for volumes and physics / animation of volume data.

Volumetric rendering
Vdb volumes

22 | PAGE

- Obvious candidates for mobile
- Upsampling
- Denoising
- Frame interpolation

- Features often driven by hardware manufacturers
- Easy to run on “seperate” TPU
- Relatively easy to integrate
- Frequently CUDA only

Engine built for
Machine Learning
and Ray Tracing

Invest in tools and
processes for
growth.

Machine learning
for games

23 | PAGE

Render graph
Built on top of our render graph, all kernels in hlsl.01.

fp16 inference & training
The framework supports inference and training at
full fp16 precision. (few operations are
implemented using mixed precision)

02.

extended ONNX
Our models are imported as ONNX. Wider support
of onnx operator and support for loading and
executing (inference/training) a graph defined in
ONNX.

03.

Breda-nn

Compute only inference and training
cross-platform (vulkan + dx12).
Focus on real-time and tight integration with
our rendering pipeline.

Features
Nerf, OIDN denoiser;
nn-operations: grid encoders (dense +
hash instant ngp), linear layer, fully fused
mlp, Conv2d, pool2d, upsample2d, losses,
spherical harmonics encoder, activation

04.

Successor of breda-inference.

24 | PAGE

Based on Instant-NGP and using fully fused MLP.
Support for loading and rendering NeRFs trained using
Instant-NGP.

Next Steps
● Training in Breda (ongoing)

● Integration in ray-tracer/path-tracer:

○ Relightable NeRF (light)
○ Integration with textured meshes

● Integration with NeRF studio

01.

Nerf
breda-nn

24 | PAGE

https://github.com/NVlabs/tiny-cuda-nn

25 | PAGE

Published in Siggraph Asia 22: NeuBTF
Implemented in both our path-tracer and ray-tracer.

They can be obtained from captures of

- real-life materials
- rendered materials

Neural Material
breda-nn

Applied to a mesh
like “textures”

Integrated with
“bespoke”
materials/scenes

https://github.com/Traverse-Research/NeuBTF

26 | PAGE

In modern rendering, denoising is increasingly handled by machine
learning rather than traditional filters. A neural network predicts a
pixel-specific filtering kernel, utilizing additional per-pixel features like
world normals, camera distance, and material properties. For real-time
rendering efficiency, an encoded kernel version is initially predicted and
later expanded to its full form, ensuring both performance and
enhanced image quality

path space denoising
breda-nn

Applied to a mesh
like “textures”

Integrated with
“bespoke”
materials/scenes

27 | PAGE

Vaidyanathan et al. published first, but we’ve independently
researched a similar technique.

As modern streaming demands high-quality visual content
at low bandwidths, efficient texture compression methods
are becoming increasingly essential. Our approach for
compressing Physically-Based Rendering (PBR) textures
into Machine Learning models ensures high-quality texture
reconstruction while reducing storage and streaming
requirements.

texture compression
breda-nn

27 | PAGE

28 | PAGE

Use machine learning inference to
run water simulations in real time

What’s possible with ML?

Upcoming project: we’ll dive into
content generation in

stable-diffusion type techniques

Content generation

28 | PAGE

Use machine learning to
animate cloth in real time

DeepCloth

Use machine learning to
blend between animations

ML deformers

Water simulations

29 | PAGE Actual renderings from recent updates

30 | PAGE

31 | PAGE

CONTACT US

jasper@traverse.nl / darius@traverse.nl

https://evolvebenchmark.com

Jasper Bekkers & Darius Bouma

