

TRAVERSE

e Applied Research and Development
o Founded in 2019 by Jasper Bekkers
o Located in Breda, The Netherlands
e Research
o Tryto run ahead of the industry to prove out
concepts
o Nimble codebase
e Benchmarking
o Working with device manufacturers
o Cutting edge features
e Collaborations
o Strong university ties
o Game industry background & veterans
e Sharing
o Publish at conferences
o Open source contributions
o Host and attend meetups

®® 0O

z|E>AGE <<

TREE PILLARS

GRAPHICS RESEARCH

EP“ mc“mns Impact and longevity ‘ DEVEI-“P“E"T

Y8 ‘
¥ . Evolve
. _ Excellence

s Long and short term rendering research that
has a primary focus on Ray Tracing and Together with software and hardware
We're developing a GPU Machine Learning. vendors we can help to build out and
benchmarking suite called “Evolve" ; optimize their GPU drivers.
that will focus in various graphics Framework built from the ground up for
workloads prototyping and developing forward looking = We provide direct services for workload
graphics. . generation, pre-/post-silicon validation and

:) : : performance evaluation.
Ray tracing, path tracing, volumetrics, machine

learning inference and training.

High paced R&D

ONORGNO |PAGE ¢

EVOLVE
01. 02. whv evorve

Breakthrough & Innovation

Vulkan + DirectX12 + Metal Scores for various workloads
Ray tracing Open core
Path Tracing Community

Core features of Evolve and Breda framework
Quality assurance

Game developer backgrounds

Realistic workloads

Complex scene

Dynamic lighting

Ray Query and Ray Pipeline
based implementations of all
techniques

CONONOXQ, |PAGE <

We'll render this scene with various
rendering algorithms, we have two
path tracers and a hybrid renderer

Hybrid renderer

We've set up a state of the art hybrid
renderer; designed from the ground
up to support both RayQuery and
Pipeline based ray tracing

ONOROGNO

RAYTRAGING

Android is first class supported, just
due to its extremely heavy workload,
real-time performance is expected
only on high-end devices.

Desktop will release on all ray tracing
capable devices

Lush vegetation

The point of this demo is to show
how we can render (animated)
vegetation really well. We'll need to
test with alpha testing vs mesh geo

51 PAGE €

- Acceleration structure
- Ray Tracing

scnnEs an VAnlnus - Rasterization
- Compute
- Energy consumption
wnnKl.nAns - Driver overhead

What makes EVOLVE different from other
benchmarks that exist on the market

CONONOXQ, |PAGE <

0 1 n Show and share detailed information about TLAS /
BLAS performance, trace performance etc

02! We'll need to educate our users about what all the
statistics mean in laymans terms and we'll work

with press to get this information right

HALL OF FAME

‘GLOBAL RANK - ENERGY USAGE oy ek MP TO 03
u For our end-users we'll have leaderboards
——_ :] that can be sorted and segmented. In app
| &Y 3 Somhts : we'll award users their scores as well

NVIDIA GeForce RTX 4090

CONONOXQ, |PAGE <

SYSTEM PERFORMANCE
E VO ISVIE NI i

Your device

ub4max

Your GPU Your CPU
NVIDIA GeForce RTX 4070 Ti AMD Ryzen 9 7950X 16-Core Processor

View

BENCHMARK FRAME TIMES POWER

Reflections

SHARE YOUR RANK

Ye®

Reflections

Reflection passes perform raytracing operations to simulate
reflections, using ReSTIR to reduce the noise

| PAGE <<

CORE FEATURES

CONONOXQ,

01.

02.

Wavefront-style path tracer with support for both ray-queries
and pipeline traces. Optional recursive pipeline path tracer.

RT Global illumination, RT Reflections, RT Shadows as
well as a fitted material model.

Default usage of a render graph, enabling quick iteration
times while remaining efficient. Breda guarantees
resource lifetimes outlive the GPU timeline; no explicit
syncing or lifetime management is needed.

All code is written in Rust. Shaders are written in HLSL
and are identical code-wise between graphics APIs.

| PAGE

PATH TRACER

- Both ray-queries and pipeline tracing are available
- Wavefront style path tracer

- Pipeline style recursive path tracer

- Radiance caching

®® 0O | PAGE

- Clipmap irradiance cache
- Hash grid radiance cache
- Neural radiance cache

CONONOXQ, |PAGE ¢

- ReSTIR based dynamic Gl
- ReSTIR based Reflections
- RT Refraction

- RT Soft shadows

- Fitted conductor materials

®® 0O |PAGE ¢

compute:

ENGINE & DEVELOPMENT

"evolve: :wireframe.cs.hlsl™

- Very small amount of code
- No explicit resource/pass syncing

- Optimal barriers and grouping is handled internall -
P gretping = ey .constants_buffer(&wireframe_ constants)
- Resources are guaranteed to outlive GPU timeline - —

.read(vbuffer_indices)
.write(&wireframe_output)
.dispatch(

ComputePass::new("Wireframe pass", render_graph)

&shader_db.get pipeline("wireframe"),
render_width.div_ceil(8),
render_height.div_ceil(8),

1,

CONONOXQ, |PAGE ¢

ENGINE & DEVELOPMENT

#[derive(Copy, Clone, Eq, PartialEq, Hash)]
#[repr(transparent)]
pub struct RenderResourceHandle(u32);
impl RenderResourceHandle {
pub fn new(version: u8, tag: RenderResourceTag, index: u32, access_type: AccessType) -> Self {
let version: u32 = version as u32;
let tag: u32 = tag as u32;
let index: u32 = index;

let access_type: u32 = access_type.is_read_write() as u32;
Self(version << 26 | access_type << 25 | tag << 23 | index)

CONONOXQ,

| PAGE <<

ENGINE & DEVELOPMENT

t RwTexture {
RenderResourceHandle handle;
template < typename RWTextureValue > RWTextureValue loadlD(uint pos) {
validateResource(kWritable, kTextureResourceTag, this.handle);
RWTexturelD<RWTextureValue> texture = DESCRIPTOR_HEAP(RWTexturelDHandle<RWTextureValue>, this.handle.writeIndex());
- Resources are abstracted return texture.load(pos);

- Flexible usage

- Aimed to work for all APIs template < typename RWTextureValue > RWTextureValue load2D(ui pos) {
- NO specific user code validateResource(kWritable, kTextureResourceTag, this.handle);
No API specifi d 1lid K ble, k g, this.handl
-l?escu;n:e[)escrﬁatorfiecua abstraction for RWTexture2D<RWTextureValue> texture = DESCRIPTOR_HEAP(RWTexture2DHandle<RWTextureValue>, this.handle.writeIndex());
return texture.Load(pos);
vulkan

template < typename RWTextureValue > RWTextureValue load3D(ui pos) {
validateResource(kWritable, kTextureResourceTag, this.handle);
RWTexture3D<RWTextureValue> texture = DESCRIPTOR_HEAP(RWTexture3DHandle<RWTextureValue>, this.handle.writeIndex());
return texture.Load(pos);

CONONOXQ, |PAGE ¢

ENGINE & DEVELOPMENT

PREDECLARED RESOURCE IDENTIFIERS

template <typename struct TexturelDHandle { uint internallIndex; };
template <typename sti Texture2DHandle { uint internallndex; };
template <typename struct Texture3DHandle { uint internalIndex; };

template <typename S RWTexturelDHandle { uint internallndex; };
template <typename st RWTexture2DHandle { uint internallIndex; };
template <typename struct RWTexture3DHandle { 't internallndex; };

EMULATION STRUCT

ruct VulkanResourceDescriptorHeapInternal {
ByteAddressBuffer operator[](ByteBufferHandle identifier) {

return g_ByteAddressBuffer[NonUniformResourceIndex(identifier.internallndex)];

}

CONONOXQ, | PAGE

ENGINE & DEVELOPMENT

struct Bindings {
SimpleBuffer constants;
Texture vbufferIndices;
RwTexture output;

- Load any resource from a buffer }s

- Robust bindless resource usage validation

- Resource lifetime validation [numthreads(8, 8, 1)] void main(uint2 dispatchThreadId

- Built-in breadcrumbs system : SV_DispatchThreadID) {

- Runtime shader printing/asserts Bindings bnd = loadBindings<Bindings>();

float someOutput = 1.0;
bnd.output.store2D<float>(dispatchThreadld, someOutput);

CONONOXQ, |PAGE ¢

ENGINE & DEVELOPMENT

VERSION MISMATCH FAILURE

[breda_render_backend_api::shader_logging][ERROR]
Compute Shader GPU resource validation failed:
Resource version mismatch in “gpu_validation® RenderResourceHandle of type "Buffer has version: @ Expected version: "1 .

Possible causes:
- A "RenderResourceHandle was unsafely extracted by the user, where the handle outlived the resource.
- User copied raw " RenderResourceHandle within a shader to a buffer for later reuse, this is not allowed!

RESOURCE TYPE MISMATCH

[breda_render_backend_api::shader_logging][ERROR]
Compute Shader GPU resource validation failed:
Resource access mismatch in “gpu_validation™ handle is of type: “Texture , Expected handle of type: “Buffer .

WRITABILITY FAILURE

[breda_render_backend_api::shader_logging][ERROR]

Compute Shader GPU resource validation failed:
Tried writing to resource that is read-only in "gpu validation RenderResourceHandle has AccessType of: “ReadOnly .

CONONOXQ, |PAGE <

BREDA FRAMEWORK

CONONOXQ,

- Breda will be fully open source under
a permissive license

- 100% source code and assets
become available to licensees.

- Easy cross-platform builds due to
our usage of Rust and Cargo

CORE FEATURES OF EVOLVE
AND BREDA FRAMEWORK

- Cross-Platform Support: Windows, Android, Linux, - GPU Skinning Animation System Dynamic Elements & TLAS/BLAS
SteamOS/SteamDeck, and upcoming support for MacOS and iOS. - Alpha Testing/Vegetation Rendering

- Hardware Ray Tracing - Large scale raytraced crowd rendering

- Efficient GPU Utilization - Deterministic from run to run

- Render Graph System

- Written by industry experts

- Raytracing natively on Galaxy S23 and S24, Mali, and Qualcomm
mobile GPUs as well as Nvidia, Amd and Intel

CONONOXQ, |PAGE <

VOLUMETRIC RENDERING

After ray tracing hardware got introduced, it was quite evident that building
and maintaining acceleration structures became feasible for solid
geometry.

We've focussed research on acceleration structures for volumes, light
transport for volumes and physics / animation of volume data.

ONOROGNO |PAGE ¢

MACHINE LEARNING

- Obvious candidates for mobile
Upsampling
Denoising
Frame interpolation

- Features often driven by hardware manufacturers
- Easytorunon “seperate” TPU

- Relatively easy to integrate

- Frequently CUDA only

ye &

Engine built for Invest in tools and
Machine Learning processes for
and Ray Tracing growth.

®® 0O |PAGE ¢

BREDA-NN

Compute only inference and training
cross-platform (vulkan + dx12).

Focus on real-time and tight integration with
our rendering pipeline.

CONONOXQ,

01.

02.

04.

Built on top of our render graph, all kernels in hlsl.

The framework supports inference and training at
full fp16 precision. (few operations are
implemented using mixed precision)

Our models are imported as ONNX. Wider support
of onnx operator and support for loading and
executing (inference/training) a graph defined in
ONNX.

Nerf, OIDN denoiser;

nn-operations: grid encoders (dense +
hash instant ngp), linear layer, fully fused
mlp, Convad, poolad, upsample2d, losses,
spherical harmonics encoder, activation

| PAGE

NERF

Based on Instant-NGP and using fully fused MLP.
Support for loading and rendering NeRFs trained using
Instant-NGP.

01.

® Training in Breda (ongoing)
® Integration in ray-tracer/path-tracer:

O Relightable NeRF (light)

o Integration with textured meshes
® Integration with NeRF studio

®® 0O

https://github.com/NVlabs/tiny-cuda-nn

NEURAL MATERIAL

Published in Siggraph Asia 22: NeuBTF
Implemented in both our path-tracer and ray-tracer.

They can be obtained from captures of

- real-life materials
- rendered materials

e 2y

Applied to a mesh Integrated with
like “textures” ‘bespoke’
materials/scenes

®® 0O

| PAGE <<

https://github.com/Traverse-Research/NeuBTF

PATH SPAGE DENOISING i

In modern rendering, denoising is increasingly handled by machine
learning rather than traditional filters. A neural network predicts a

T

pixel-specific filtering kernel, utilizing additional per-pixel features like e s 72y
world normals, camera distance, and material properties. For real-time
rendering efficiency, an encoded kernel version is initially predicted and [EEMSSEHES |smmmmamas
later expanded to its full form, ensuring both performance and 3 -
enhanced image quality

j Y

$

i

Applied to a mesh Integrated with ' }{

like "textures” ‘bespoke’ e 3
materials/scenes

CONONOXQ, | PAGE

TEXTURE COMPRESSION

Vaidyanathan et al. published first, but we've independently
researched a similar technique.

As modern streaming demands high-quality visual content
at low bandwidths, efficient texture compression methods
are becoming increasingly essential. Our approach for
compressing Physically-Based Rendering (PBR) textures
into Machine Learning models ensures high-quality texture
reconstruction while reducing storage and streaming
requirements.

®® 0O

What's possible with ML?

ML DEFORMERS
Use machine learning to
blend between animations

Content generation

Upcoming project: we'll dive into
content generation in
stable-diffusion type techniques

Water simulations

Use machine learning inference to
run water simulations in real time

Use machine learning to
animate cloth in real time

®® 0O

Jjasper@traversenl / darius@traverse.nl

https:/evolvebenchmark.com

Jasper Bekkers & Darius Bouma

ONORGNO

