(@) SScraPnaie KHRC INOS

Introduction to the
Crash Diagnostic Layer

Jeremy Gebben
Senior Graphics Software Engineer
LunarG, Inc

‘\\

This work is licensed under a Creative Commons Attribution 4.0 International Licenséf: — © The Khronos® Group, Inc. 2022 - Page 1

At LunarG for the past 4 years

o Validation and the synchronization2 emulation layer
Ex Kernel Mode Driver dev

o Early / mid Android era

o GPU hangs roll down hill
Ex Graphics Software Architect

o “Hey HW team, why can’t we have nice things?”
Lots of non-GPU embedded experience

o Can you debug with LEDs?

Overview of Crash Diagnostic Layer

e Provides ‘glue code’ for debugging VK_ERROR _DEVICE LOST
e New addition to the Vulkan SDK
o Alpha quality!!!
o Windows and Linux currently supported
e \Works on many devices (that support debug extensions)
e Lightweight (~5% perf hit)

What can CDL do?

e Track forward progress of queue submission and command buffer processing
e Interpret fault information from the driver
e Manipulate the command stream
o Add checkpoints, for command buffer forward progress
o Add pipeline barriers
e Dump state to the filesystem in YAML format
e CANNOT debug within a shader invocation

Extension support

AMD ARM | Intel | NVidia | Qualcomm | Samsung
VK_AMD_buffer_marker
VK_AMD_device_coherent_memory
VK_NV_device_diagnostic_checkpoints
VK_EXT_device_fault
VK_EXT_device_address_binding_report

What happens when a GPU crashes? (user view)

e Error dialog from app, driver, or OS _
. . . . O Settings
e Application just vanishes
e Screen goes black momentanly Application has been blocked from accessing
e Screen goes black forever Graphics hardware.
e X session gets logged out Application cdl_tests.exe has been blocked from
e Kernel panic/ BSOD accessing Graphics hardware.
o

Device becomes unresponsive and very o 99+ g Man ~ P LrasnuiagnosucLaye
warm

What happens when a GPU crashes? (app view)

Restart
rendering

Vulkan returns
DEVICE _LOST Exit Nicely
error

Do
something

What happens when a GPU crashes? (driver view)

Timeout
waiting for
something
(hang) i Continue
gint;/y Reset GPU processing work
application hardware from “innocent”
applications

GPU
Error/Fault
interrupt Return
DEVICE_LOST
to any Vulkan
calls

Why is GPU crash debugging so hard?

e Pre-Vulkan graphics APls didn’t consider crashing possible
o GPU crash == driver or HW bug! Driver must validate EVERYTHING

o Full screen games -> No concurrent use of the GPU, no fault recovery features

Why is GPU crash debugging so hard?

e Massive concurrency
o How do you single step through 1 million fragment shader invocations?
o How much state do you save after a crash?

o Some problems go away when debugging

Why is GPU crash debugging so hard?

e |Intellectual property
o For some GPUs, hardware information is not publicly available
o Large architecture differences between different GPU designs

o Debug features aren’t high priority

How to use CDL

v VK_LAYER_LUNARG_crash_diagnostic
Get the new SDK Watchdog timeout (ms) 30000

Start vkconfig v D”’?ji,tﬁ'ﬁf Path

Choose the Crash Diagnostic configuration Dump queue submissions Running

Dump command buffers Running

Crash Something Dump commands Running

. Dump shaders Off
Look at dump files v Foading

o Linux: ~/cdl/.. v Message Severity
] Error
o Windows: %USERPROFILE%\cd1\. .. () Warning
e File Issues! =L
Log file name stderr
(_] Enable Tracing
(] Enable semaphore log tracing.
v State Tracking
(] Synchronize commands
() Instrument all commands
Track semaphores

$1€1€|€

Log message example

00:00:00.008 CDL INFO: Version 1.3.289 enabled. Start time tag: 2024-07-03-102527
00:00:00.008 CDL INFO: Begin Watchdog: 306000ms
00:00:00.076 CDL WARNING: No VK_AMD_device_coherent_memory extension, results may not be as accurate as
possible.
00:00:00.076 CDL WARNING: No VK_EXT_device_fault extension, vendor-specific crash dumps will not be
available.
00:00:00.076 CDL WARNING: No VK_EXT_device_address_binding_report extension, DeviceAddress information
will not be available.
00:00:32.236 CDL INFO: Completed sequence number has impossible value: -1 submitted: 4700 VKkQueue:
0x00000291204AD320[], VkSemaphore: 0x00000291208C6E70]]
00:00:32.237 CDL INFO: Completed sequence number has impossible value: -1 submitted: 6 VkQueue:
0x00000291206072CO[], VkSemaphore: 0x00000291208C6210]]
00:00:32.237 CDL ERROR: Device error encountered and log being recorded

Output written to: "C:\\Users\\jgebb\\cd1l\\2024-07-063-102527\\cdl_dump.yaml"

Forward progress

e Evidence that the GPU is still processing work
e In the driver
o Getting ‘work complete’ interrupts
o Value of a counter changing in a register or memory counter
o Lack of fault interrupts
e In an application
o Various Vulkan wait calls completing
m But... vkDeviceWaitldle() and vkQueueWaitldle() don’t ever time out
o Timeline semaphore or fence state changing

LUN/\R)G.

Watchdog timer

e Monitors application activity and triggers a dump if application appears “stuck”
e Assumption: a non-stuck application will periodically submit new work to the GPU

e Reasons to turn off

o If using a debugger, the watchdog may fire because the application is stopped

o Some drivers have their own watchdog timer

o Non-standard use cases like long running compute jobs

Submission state tracking

—)

Split up submissions and write a
per-queue timeline semaphore after

every &8 VkSubmitinfo Signal Sems
LUN/\R)G,

Command Buffer checkpoints

e Reminder: multiple commands can be executing at the same time!

e Counters that track progress within a command buffer

e \Write values somewhere after ‘interesting’ commands

e \Written at the TOP_OF PIPE and BOTTOM_OF_PIPE pipeline stages.
o TOP_OF_PIPE - command has started executing
o BOTTOM_OF_PIPE - command has finished execution

Command Buffer checkpoints
(VK_AMD _buffer _marker)

e \Writes arbitrary values to a buffer when the pipeline stage is reached by the
command

e Requires VK_AMD_device_coherent_memory for accurate reporting during a
crash

e But values for completed command buffers are always written LUNAR)G

Command Buffer checkpoints
(VK_NV_device_diagnostic_checkpoints)

e Asingle command writes both the TOP_OF_PIPE and BOTTOM_OF_ PIPE
values

e App can call vkGetQueueCheckpointDataNV() to retrieve checkpoint info

Checkpoints in a crashing CB are usually more accurate

e But checkpoints for completed CBs are not reported LUNAR)G

CDL checkpoint output

Command:
id: 17
checkpointValue: 0x00000012
name: vkCmdBeginDebugUtilsLabelEXT
state: COMPLETED
Labels:
- Render Mesh

Parameters: (...)
message: "'>>>>>>>>>>>>>> LAST COMPLETE COMMAND <<<<<<<<<<<<<<'"

(more commands)

Command:
id: 24
checkpointValue: 0x00000019
name: vkCmdDrawIndexed
state: INCOMPLETE
labels:
- Render Mesh
parameters:
indexCount: 8511627
instanceCount: 1
firstIndex: ©
vertexOffset: 0
firstInstance: 0
internalState:
pipeline: {}
descriptorSets: []
message: WIAAAAAAAAAAAAAAN LAST STARTED COMMAND AANAAAAAAAAAAAAAN'T

GPU faults

GPU Device Addresses are usually virtual memory

(@]

(@]

Most modern GPUs have some sort of MMU

Page faults are generated for invalid memory accesses

VK _EXT_device_ fault

(@]

(@]

(@]

Provides details about GPU page faults
Faulting address range, type of memory access (read, write, execute)

Can provide vendor specific fault information

VK_EXT device address binding_report

(@]

(@]

Provides notifications about changes to the GPU address space

Includes both user-visible objects (eg. buffer, image) and internal driver objects

CDL Device Fault output - buffer overrun

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x000000035330A600
end: 0x000000035330AFFF
priorAddressRecord:
begin: 0x00000003531B4D00O
end: 0x000000035330A600
type: VkDeviceMemory
handle: ©x000001CDA3359F10]]
currentlyBound: true

CDL Device Fault output - use after free

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000003531B4D00
end: 0x00000003531B4DFF
matchingAddressRecords:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: ©x000001CDA3359F10]]
currentlyBound: false

CDL Device Fault - bad address

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000BADDEADBOOO
end: 0x00000BADDEADBFFF
priorAddressRecord:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: ©x000001CDA3359F10]]
currentlyBound: true

Sync after commands

e Insert a pipeline barrier after each checkpoint
o srcStageMask = dstStageMask = ALL_COMMANDS
o srcAccessMask = MEMORY_WRITE, dstAccessMask = MEMORY_READ

e This limits how many commands can execute in parallel

e In one sample trace, this reduces the number of number of running
commands from ~180 to 1

e This will make some GPU crashes stop reproducing, which likely means the
application is missing synchronization

e Currently only works with dynamic rendering

Sync after commands

Debug utils

e CDL supports VK_EXT_debug_utils and VK_EXT_debug_marker

e Object names are printed in the dump file

e Command labels are printed for every command

e Log messages can be sentto VK_EXT_debug_utils or VK_EXT_debug_report

message callbacks

Thank you!

e Demo at the Khronos Networking Reception

e Included in the 1.3.290 SDK
e Code & Issues at https://github.com/LunarG/CrashDiagnosticLayer

e Thank you to the Google Stadia Graphics Flight Recorder

