
© Copyright Khronos Group, 2010 - Page 1

OpenWF

Overview

© Copyright Khronos Group, 2010 - Page 2

OpenWF in the Khronos Ecosystem
Unified access to compositing and display resources

Display Hardware Media Acceleration (e.g. Blitter and GPU)

Applications and

Media Engines

OpenGL|ES OpenVG

OpenMAX

Compositing Windowing

System in OS

Portable applications can use

OpenKODE Core window system

abstraction calls to communicate

with the Windowing System

2D Composition API to bring

application and UI elements

together on the screen

Khronos media APIs used

by applications - and the

window system to render

and compose UI elements

Portable access to display

control hardware to control

screen attributes

© Copyright Khronos Group, 2010 - Page 3

Target User of OpenWF
• Compositing Window Manager (single user, probably the OS)

More on this later...

Benefits compared to OpenGL compositing (using OpenWF
hardware)

• Memory bandwidth

• Power consumption

• Filtering/scaling quality

© Copyright Khronos Group, 2010 - Page 4

What is Compositing?
Combining several source
”images” with respect to order,
transparacy (or possibly masks),
scaling, rotation/flipping, cropping
into one destination image.

In this example all images except
the MMI has transparacy
information (α) in separate buffers.

Src3 MMI

Src1
Camer

a Src2
Video

Src4
G

rap
h

ic

Src3 MMI

Src1
Camera Src1

α

Src2
Video Src2 α

Src4
3D Graphics

Src4 α

Sources Destination

© Copyright Khronos Group, 2010 - Page 5

What’s a Compositing Window System?
Separation between application and the

window manager/composer

• Applications renders to individual off-screen
buffers.

• The compositor does post processing on the
output buffers like alpha blending, rotation,
cropping.

• Applications do not need to know anything
about this post processing.

Window
Manager

08:26

Video

08:26

3
D

G
am

e

Video
App.

System

3D App.

© Copyright Khronos Group, 2010 - Page 6

GL vs WF compositing
• Why not use only OpenGL for compositing?

– OpenWF is implementable on top of OpenGL

– You could do effects in GL that are not possible to
do in WF

• The gross part of compositing will be for ”static
scenarios” like video playback, full screen gaming etc. In
this case, a specific compositing hw (using overlay
compositing) could perform the work with lesser
memory bandwidth and could to it in a more power
efficient way

• There are higher requirements for scaling quality in
OpenWF then in OpenGL – scaling images and windows
is an important part of compositing (requires hw
support)

• OpenWF will make it possible to utilize hardware from
different venders in a standardized way

© Copyright Khronos Group, 2010 - Page 7

GL + WF compositing = TRUE
• It is actully possible to use both GL and WF

compositing

– Use GL for advanced transition effects and WF for
more simple and static scenarioes

08:26

3
D

G
am

e

08:26

3D
Game

08:26

Video
3D Game

Video

Static 2D Scenario: Video is

active – 3D game is paused =>

OpenWF compositing

User activates the 3D game (”application

transition” effects in 3D) =>

OpenGL compositing

Static 2D scenario: 3D

game in full-screen –

video paused =>

OpenWF compositing

© Copyright Khronos Group, 2010 - Page 8

Why 2 APIs?

WFC

• Possible to implement on existing
GPU or specific hardware for
better power consumption

• Both ”memory to memory” and
”on-screen” compositing

• Unlimited number of pipelines

WFD

• Should be possible to support with
legacy display control hardware

• On-screen compositing only

• Limited number of pipelines

• Optional support for rotation and
scaling/filtering in the pipeline

• Standardized handling of displays,
including attachable displays (like
HDMI)

© Copyright Khronos Group, 2010 - Page 9

Deployment Possibilities
• OpenWF Composition and OpenWF Display are distinct interfaces reflecting the

traditional separation of the hardware. The APIs can be used together in the same

system or as standalone APIs.

• This independence enables system builders to take a phased approach to adopting

OpenWF, for example by retaining an existing proprietary API for display control whilst

migrating to OpenWF Composition for composition activities, or vice versa.

© Copyright Khronos Group, 2010 - Page 10

A typical system based on WFC & WFD
• OpenWF C - blitter

hardware

• OpenWF D – a single

display controller.

• Graphical and multimedia

pixel routed by the

windowing system to the

compositor - result to the

display controller.

Window Manager

OpenWF Composition

Implementation

OpenWF

Composition API

OpenWF Display Control

Implementation

OpenWF

Display Control API

Display Controller

Hardware
Blitter Hardware

Display

Hardware

(LCD)

Display

Hardware

(TV Out)

EGL API

EGL

Implementation

Control Path

Data Path

OS Vendor

Platform Integrator

HW Vendor

Other Graphics

Engines
(OpenGL-ES,

OpenVG, etc.)

Other

Graphics

APIs

Other Graphics

Hardware

© Copyright Khronos Group, 2010 - Page 11

OpenWF Compositing

© Copyright Khronos Group, 2010 - Page 12

OpenWF Composition
A wide range of visual scenarios can be implemented in
terms of 2D layering. OpenWF Composition offers a clean
API for achieving system-wide composition of layered
content, such as 3D content rendered through OpenGLES
hardware and video content decoded using OpenMAX-IL
hardware.

© Copyright Khronos Group, 2010 - Page 13

Key rendering operations are:
• Scaling (with control over filtering)

• Rotations (90-degree increments)

• Mirroring

• Alpha-blending (per-pixel and global)

• Alpha masking

• Solid background color

© Copyright Khronos Group, 2010 - Page 14

Scalable on different HW
The scalable nature of the Composition API allows
system adaptors to use acceleration hardware from
low-end DSP-based implementations all the way
through to high-end Graphics Processing Units.
Both render-to-memory and render-to-screen
(a.k.a. overlay) hardware can be used to process the
content. The technology can be used on systems
with unified and non-unified graphics memory.

DSP GPUPossible hw to use

ASIC

© Copyright Khronos Group, 2010 - Page 15

Optimize resource useage
This implementation flexibility enables the driver
writer to dynamically optimize the way content gets
merged onto the display according to the specific
hardware platform being used. Along with
performance/throughput gains, memory bandwidth
usage and power consumption can be reduced. This is
particularly useful for maximizing battery life during
long-running use-cases such as viewing HD video with
subtitles. No need for 3D HW to be engaged.

© Copyright Khronos Group, 2010 - Page 16

User-driven/Autonomous rendering
The Composition API supports both user-driven and
autonomous rendering. User-driven rendering
means that the windowing system decides when to
recompose the scene. Autonomous rendering
means that content can be rendered, composed and
displayed without the windowing system being
involved. On platforms with the appropriate
hardware, this can be used to allow hardware video
playback directly to the display without per-frame
CPU intervention.

Video 30 fps Text strip

Video

Text strip

© Copyright Khronos Group, 2010 - Page 17

OpenWF Display

© Copyright Khronos Group, 2010 - Page 18

OpenWF Display
Embedded devices with multiple displays and connections
for external displays are becoming increasingly common.
These displays offer various degrees of configurability and
commonly require custom routines for set up and mode
selection. OpenWF Display provides a consistent way to
query and control the state of these displays.

Display controller
LCD

HDMI

API

© Copyright Khronos Group, 2010 - Page 19

Key features are:
• Dynamic discovery of external displays, e.g.

cable attach detection

• Power control

• Mode-setting (resolution, refresh rate)

• Rotation and flipping control

• Pipeline management (scaling, rotation,
mirroring, alpha masking, alpha blending)

• Retrieval of standardized display information
(EDIDv1, EDIDv2, DisplayID)

• Content protection control, e.g. HDCP

© Copyright Khronos Group, 2010 - Page 20

Display Management
The Display API is designed to allow the
windowing system to be the focal point for
display management. Support is provided for
built-in displays, such as embedded LCD panels,
and external displays, such as those connected
by HDMI/DVI/S-Video. The cable attach
sequence allows the system to tailor the display
mode based on information dynamically
reported from the display device that was
connected. The wide range of display types is
abstracted so that the windowing system can
easily offer higher-level services, such as
spanning of windows across displays.

Display
controller

LCD

HDMI

API

© Copyright Khronos Group, 2010 - Page 21

Compatible with Existing HW
OpenWF Display is a low-level abstraction
allowing it to be compatible with a broad range
of display control hardware without the need
for costly software fallbacks. The Display API
reflects common hardware constraints and
behaviors such as limitations on the number of
display pipelines a device can offer.

© Copyright Khronos Group, 2010 - Page 22

Features and Benefits

© Copyright Khronos Group, 2010 - Page 23

Feature Benefit

Standardized Interface
A well-defined standard abstraction for
accessing composition and display control
functionality.

For implementers:
• Reduced hardware and software design costs.
• Increased marketability of features.
• Maximized opportunity of hardware functionality being utilized.
For users:
• Decreased time to integrate new hardware.
• Decreased hardware switching costs.
• Portability: Minimized rework of higher level software through consistent
driver interfaces.

Extensive Conformance Tests
Khronos provides adopters with a rich set of
tests that verify compliance with the
specification and provide an assessment of
visual quality.

For implementers:
• Reduced costs associated with developing in-house testing infrastructure.
For users:
• Provides a guarantee of quality.
• Tests can be reused as a form of acceptance criteria when sourcing
implementations.

© Copyright Khronos Group, 2010 - Page 24

Feature Benefit

Conformant Sample Implementations
Khronos publishes an open source Sample
Implementation of both OpenWF
Composition and OpenWF Display that passes
the Conformance Tests and can be used to
generate reference images for comparison
during testing.

For implementers:
• Provides a concrete example to guide new implementations.
• Acts as a focal point for resolving questions over intended behavior.
For users:
• Provides a quick way to try out and learn about the technology.
• Offers a foundation to build a Windowing System in preparation for
switching to a hardware-based implementation.

Optimal processing & data paths
OpenWF describes the intended visual result
rather than making assumptions about how
the content gets onto the screen. This
enables the driver writer to choose best data
path and best processing hardware for the
job.

• Increased battery life via the ability to use dedicated hardware with fewer
gates than full GPUs.
• Decreased memory bandwidth usage via the use of overlay composition.
• Better performance via reduced processing overheads and ability to run
composition in parallel with rendering.

Optimal control paths
OpenWF supports streaming content directly
to the display. For example, video data can be
generated, composed and displayed without
the need for per-frame intervention by the
windowing system.

• Increased battery life via increased sleep time for the CPU that runs the
windowing system; especially during long-running use-cases such as video
playback.
• Decreased latency between content rendering and display.

© Copyright Khronos Group, 2010 - Page 25

Memory Bandwidth
OpenWF Composition and OpenWF Display allow driver writers to take advantage of
the full range of hardware available for composition. Choosing wisely between the
different types of GPU composition and overlay composition enables memory
bandwidth saving of over 69% on some use-cases.

Display Controller

Pipeline 1

William, I don’t like this place...

Video Player

01:57 -00:12 Close

Video Pipeline

Produces YUV

UI Pipeline

Produces RGBA

William, I don’t like this place...

Video Player

01:57 -00:12 Close

Pipeline 2

Blending

Player UI – controls in two separate buffers

Video text strip with transparent background
Result after compositing

Video frame without alpha

© Copyright Khronos Group, 2010 - Page 26

Optimized Control Paths
Traditional integration of composition systems relies on the graphics/multimedia
driver signaling the windowing system every time a new frame of content is ready
to be composed onto the screen. The OpenWF APIs do not have this limitation and
permit composition to occur without per-frame windowing system interaction
whilst still keeping the windowing system in control of where content is displayed.

© Copyright Khronos Group, 2010 - Page 27

Non-optimized control-path

The traditional control-path in red. This consists of the signaling that provides notification
of new content, transfers ownership of buffers throughout the chain of components and
may also communicate audio-visual synchronization information.

OpenGL|ES

OpenVG

OpenMAX

Application

Windowing

System

Data

Flow Control

Scene Info

Display

Proprietary

Manual

Compositor

© Copyright Khronos Group, 2010 - Page 28

Optimized control-path

This is the optimized control-path enabled by OpenWF. Using this model, the
windowing system need only be active whilst changing the scene geometry. On systems
that contain dedicated hardware for graphics and multimedia, the main benefit is that it
offers more time for the main CPU to sleep during long-running use-cases with mostly
static scene geometry, e.g. video playback with subtitles. Such systems can also benefit
from the reduced latency that comes from new frame notifications bypassing the
windowing system.

OpenGL|ES

OpenVG

OpenMAX

Application

Windowing

System

Data

Flow Control

Scene Info

Display

Autonomous

OpenWF

Composition

© Copyright Khronos Group, 2010 - Page 29

Compliance and Conformance Testing
• Only products that have been certified by Khronos as

being conformant with the specifications may use the
OpenWF logos or trademarks. This means that any
product displaying the logo or advertising compliance
has successfully passed the extensive Conformance
Test Suite (CTS) defined and provided by Khronos. The
purpose of the test suite is to promote consistent,
high-quality cross-vendor implementations.

• The test suite includes comprehensive interface
testing, rendering functionality and quality tests,
stress tests and animated use-case based testing.
Tests can be run in automated and interactive modes,
with full recording of visual results. The framework is
extensible so that members may contribute further
test cases and improvements over time. The test suite
is OS-agnostic and is designed to be ported to multiple
operating systems.

© Copyright Khronos Group, 2010 - Page 30

OpenWF Summery
• Integrating new graphics and display hardware with an

existing software stack, such as an OS windowing
system or application-specific engine, can take
considerable time and resources. OpenWF
Composition and OpenWF Display reduce this
integration effort, giving OEMs a wider choice of
hardware and a quicker time to market for devices.

• OpenWF provides access to high-performance low-
cost graphics functionality that can otherwise be left
underused. Using the right hardware for the job can
have a significant quantitative effect on the graphical
and multimedia use-cases a device can support, as
well maximizing device battery life.

