
OpenML® Media Library Software
Development Kit Beginner’s Guide

007–4376–001

COPYRIGHT
© 2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and OpenML are registered trademarks of Silicon Graphics, Inc., in the United States and/or other
countries worldwide.

Linux is a registered trademark of Linus Torvolds. Windows is a registered trademark of Microsoft corporation in the United States
and/or other countries.

Record of Revision

Version Description

001 June 2004
Original publication. Supports the 1.0 release of the OpenML Media
Library Software Development Kit (ML) and ML 1.1.1 for IRIX 6.5

007–4376–001 iii

Contents

About This Guide . vii

Related Publications . vii

Obtaining Publications . vii

Conventions . vii

Reader Comments . viii

1. Introduction . 1

ML Terminology . 1

For More Information . 2

2. Getting Started with ML 3

3. Simple Audio Output Program 5

Step 1: Include the ml.h and mlu.h Files 5

Step 2: Locate a Device . 6

Step 3: Open the Device Output Path 6

Step 4: Set Up the Audio Device Path 7

Step 5: Set Controls on Audio Device Path 8

Step 6: Send Buffer to Device for Processing 8

Step 7: Begin Message Processing 9

Step 8: Receive the Reply Message 9

Step 9: Close the Path . 10

4. Realistic Audio Output Program 11

Step 1: Include the ml.h and mlu.h Files 11

007–4376–001 v

Contents

Step 2: Locate a Device . 11

Step 3: Open the Device Output Path 12

Step 4: Allocate Buffers . 12

Step 5: Send Buffers to the Open Path 12

Step 6: Begin the Transfer . 13

Step 7: Receive Replies from the Device 14

Step 8: Refill the Buffer for Further Processing 14

Step 9: End the Transfer . 15

Step 10: Close the Path . 15

5. Audio/Video Jacks . 17

Open a Jack . 17

Construct a Message . 18

Set Jack Controls . 18

Close a Jack . 19

Index . 21

vi 007–4376–001

About This Guide

This document provides an introduction to the SGI OpenML Media Library Software
Development Kit (ML). ML provides a cross-platform library for controlling digital
media hardware. It supports audio and video I/O devices and transcoders.

Related Publications
For more information about ML, see OpenML Media Library Software Development Kit
Programmer’s Guide and the mlquery(1ml) man page.

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, enter infosearch at a command line or select Help >
InfoSearch from the Toolchest.

• On IRIX systems, you can view release notes by entering either grelnotes or
relnotes at a command line.

• On Linux systems, you can view release notes on your system by accessing the
README.txt file for the product. This is usually located in the
/usr/share/doc/productname directory, although file locations may vary.

• You can view man pages by typing man title at a command line.

Conventions
The following conventions are used throughout this document:

007–4376–001 vii

About This Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

viii 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

007–4376–001 ix

Chapter 1

Introduction

This guide is a quick introduction to the OpenML Media Library Software
Development Kit (ML). If you are new to ML, you should read this guide and browse
the online example programs.

Note: The material in this guide assumes that ML is installed on your workstation,
and that you have access to the online ML example programs.

ML Terminology
The following terms are used throughout this document, and some are used in the
ML code:

Term Definition

graphics / video In ML, these terms are not synonymous: graphics
indicates the graphical display used for the
user-interface on a computer; video indicates the type of
signal sent to a video cassette recorder, or received from
a camcorder.

capability tree The hierarchy of all ML devices in the system,
containing information about each ML device. An
application may search a capability tree to find suitable
media devices for operations you wish to perform.

system The highest level in the capability tree hierarchy. It is
the machine on which your application is running. This
machine is given the name ML_SYSTEM_LOCALHOST.
Each system contains one or more physical or logical
devices.

physical device A device that corresponds to device-dependent
modules in ML. Typically, each device-dependent
module supports a set of software transcoders or a
single piece of hardware. Examples of devices are
audio cards on a PCI bus, DV camcorders on the 1394

007–4376–001 1

1: Introduction

bus, or software DV modules. Each device-dependent
module may expose a number of logical devices.

logical device Jacks, paths, or transcoders.

jack A logical device that is an interface in/out of the
system. Examples of jacks are composite video
connectors and microphones. Jacks often, but not
necessarily, correspond to a physical connector — it is
possible for a single ML jack to refer to several such
connectors. It is also possible for a single physical
connector to appear as several logical jacks.

path A logical device that provides logical connections
between memory and jacks. For example, a video
output path transports data from buffers to a video
output jack. Paths are logical entities. Depending on
the device, it is possible for more than one instance of a
path to be open and in use at the same time.

pipe The connections from memory to the transcoder, and
from the transcoder to memory.

transcoder A logical device that takes data from buffers via an
input pipe or pipes, performs an operation on the data,
and returns the data to another buffer via an output
pipe. Example transcoders are DV compression and
JPEG decompression.

UST Unadjusted system time. UST is a special system clock
that runs continuously without adjustment. This clock
is used to synchronize media streams.

MSC Media stream count. MSC is a measure of the number
of media samples that have passed though a jack. This
measure is useful to synchronize media streams.

For More Information
For an in-depth treatment of ML, consult the OpenML Media Library Software
Development Kit Programmer’s Guide as you experiment with your own programs.

2 007–4376–001

Chapter 2

Getting Started with ML

The first thing you should do is examine your system with the mlquery(1ml) tool.
This tool prints a list of all supported ML devices on the system.

Following is an example mlquery on the system linux1:

% mlquery

SYSTEM: linux1

active UST: (default software UST source)

DEVICES:

Software DV_MMX Codec [0]
OSS audio device [0]

This output indicates that there are two installed devices:

• A software DV transcoder

• An audio I/O device (which in this case is built using the Linux OSS driver)

Other options to mlquery allow you to gather more information about the installed
devices. See the mlquery(1ml) man page for more information.

007–4376–001 3

Chapter 3

Simple Audio Output Program

This example program outputs a short beep. To keep it simple, a few details
(primarily error-checking) are skipped. This program only includes the operations
required to produce the beep. The steps are as follows:

• "Step 1: Include the ml.h and mlu.h Files"

• "Step 2: Locate a Device" on page 6

• "Step 3: Open the Device Output Path" on page 6

• "Step 4: Set Up the Audio Device Path" on page 7

• "Step 5: Set Controls on Audio Device Path" on page 8

• "Step 6: Send Buffer to Device for Processing" on page 8

• "Step 7: Begin Message Processing" on page 9

• "Step 8: Receive the Reply Message" on page 9

• "Step 9: Close the Path" on page 10

Note: Consult the online example code for more advanced programs.

Step 1: Include the ml.h and mlu.h Files
To begin, you will need the following files:

File Description

ml.h

Provides the core ML library functionality

mlu.h

Provides simple utility functions built on the core library

You may choose to use only the core library or you may find it convenient to use the
simpler utility functions.

007–4376–001 5

3: Simple Audio Output Program

Include the files as follows:

#include <ML/ml.h>
#include <ML/mlu.h>

Step 2: Locate a Device
You must query the capabilities of the system to find a suitable digital media device
with which to perform your audio output task. To do that, you must search the ML
capability tree, which contains information on every ML device on the system.

In your search, you should start at the top of the tree as follows:

1. Query the local system to find the first physical device that matches your desired
device name.

2. Look in that device to find its first output jack.

3. Find an output path that goes through that jack.

In this case, assuming that the device name is being passed in as a command-line
argument, you can use some of the utility functions to find a suitable output path:

MLint64 devId=0;

MLint64 jackId=0;

MLint64 pathId=0;

mluFindDeviceByName(ML_SYSTEM_LOCALHOST, argv[1], &devId);

mluFindFirstOutputJack(devId, &jackId);

mluFindPathToJack(jackId, &pathid, memoryAlignment);

Step 3: Open the Device Output Path
An open device output path provides your application with a dedicated connection to
the hardware. It also allocates system resources for use in subsequent operations. The
device path is opened with an mlOpen call as follows:

mlOpen(pathId, NULL, &openPath);

If the mlOpen call is successful, you will get an open path identifier. All operations
using that path must use its identifier.

6 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

Note: Sometimes an mlOpen call can fail due to insufficient resources (typically
because too many applications may already be using the same physical device).

Step 4: Set Up the Audio Device Path
Set up the path you just opened for your operation. In this case, you will use signed
16-bit audio samples with the following:

• A single (mono) audio channel

• A gain of –12dB

• A sample rate of 44.1kHz

In ML, applications communicate with devices using messages. These messages are
known as MLpv messages, because they consist of a list of param/value pairs. An
MLpv ends with an ML_END to indicate completion.

For example:

mlpv controls[5];

MLreal64 gain = -12; /* decibels */

controls[0].param = ML_AUDIO_FORMAT_INT32;
controls[0].value.int32 = ML_AUDIO_FORMAT_S16;

controls[1].param = ML_AUDIO_CHANNELS_INT32;

controls[1].value.int32 = 1;

controls[2].param = ML_AUDIO_GAINS_REAL64_ARRAY;

controls[2].value.pReal64 = &gain
controls[2].length = 1;

controls[3].param = ML_AUDIO_SAMPLE_RATE_REAL64;

controls[3].value.real64 = 44100.0;

controls[4].param = ML_END;

Notice that this message contains both scalar parameters (for example, the number of
audio channels) and an array parameter (the array of audio gains).

007–4376–001 7

3: Simple Audio Output Program

Step 5: Set Controls on Audio Device Path
After you have constructed the MLpv controls message, you must set the controls on
the open audio path as follows:

mlSetControls(openPath, controls);

This call makes all the desired control settings and does not return until those settings
have been sent to the hardware. If it returns successfully, it indicates that all of the
control changes have been committed to the device (and you are free to delete or alter
the controls message).

Note: All control changes within a single controls message are processed atomically:
either the call succeeds (and they are all applied) or the call fails (and none are
applied).

Assuming that the call succeeded, the path is now set up and ready to receive audio
data.

Step 6: Send Buffer to Device for Processing
This example assumes that you have already allocated a buffer in memory and filled it
with audio samples. To send that buffer to the device for processing, do the following:

1. Construct an MLpv message that describes the buffer. That message must include
both a pointer to the buffer and the length of the buffer (in bytes):

MLpv msg[2];

msg[0].param = ML_AUDIO_BUFFER_POINTER;

msg[0].value.pByte = ourAudioBuffer;

msg[0].length = sizeof(ourAudioBuffer);
msg[1].param = ML_END;

2. Send the buffers message to the opened path:

mlSendBuffers(openPath, msg);

When the message is sent, it is placed on a queue of messages going to the device.
The mlSendBuffers call does very little work: it gives the message a cursory look
before sending it to the device for later processing.

8 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

Note: Unlike the mlSetControls call, the mlSendBuffers call does not wait for
the device to process the message, it simply enqueues it and then returns.

Step 7: Begin Message Processing
You must tell the device to start processing enqueued messages. This is done with the
mlBeginTransfer call as follows:

mlBeginTransfer(openPath);

The program can sleep while the device is busy working on the message as follows:

sleep(5)

Using sleep is simple, but the example in Chapter 4, "Realistic Audio Output
Program" shows a better approach. See "Step 6: Begin the Transfer" on page 13.

Step 8: Receive the Reply Message
As the device processes each message, it generates a reply message that is sent back
to our application. By examining that reply, you can confirm that the buffer was
transferred successfully, as follows:

MLint32 messageType;

MLpv* message;

mlReceiveMessage(openPath, &messageType, &Message);

if(messageType == ML_BUFFERS_COMPLETE)

printf("Buffer transferred!\n");

007–4376–001 9

3: Simple Audio Output Program

Step 9: Close the Path
Once you have verified that the buffer transferred successfully, you can close the path
as follows:

mlClose(openPath);

Closing the path ends active transfer and frees any resources allocated when the path
was opened.

10 007–4376–001

Chapter 4

Realistic Audio Output Program

The procedure in Chapter 3, "Simple Audio Output Program" on page 5 was for a
single audio buffer. In the example in this chapter, you will process millions of audio
samples, using the following procedure:

• "Step 1: Include the ml.h and mlu.h Files"

• "Step 2: Locate a Device"

• "Step 3: Open the Device Output Path" on page 12

• "Step 4: Allocate Buffers" on page 12

• "Step 5: Send Buffers to the Open Path" on page 12

• "Step 6: Begin the Transfer" on page 13

• "Step 7: Receive Replies from the Device" on page 14

• "Step 8: Refill the Buffer for Further Processing" on page 14

• "Step 9: End the Transfer" on page 15

• "Step 10: Close the Path" on page 15

Step 1: Include the ml.h and mlu.h Files
See "Step 1: Include the ml.h and mlu.h Files" on page 5.

Step 2: Locate a Device
See "Step 2: Locate a Device" on page 6.

007–4376–001 11

4: Realistic Audio Output Program

Step 3: Open the Device Output Path
Open the device output path just as in the previous example in "Step 3: Open the
Device Output Path" on page 6:

mlOpen(pathId, NULL, &openPath);

Opening the path also allocates memory for the message queues used to communicate
with the device. One of those queues will hold messages sent from our application to
the device, and one will hold replies sent from the device back to our application.

Step 4: Allocate Buffers
If you were only processing a short sound, you could preallocate space for the entire
sound and perform the operation straight from memory. However, for a more general
and efficient solution, you must allocate space for a small number of buffers and
reuse each buffer many times to complete the whole transfer.

Assume that memory has been allocated for 12 audio buffers and that those buffers
have been filled with the first few seconds of audio data to be output.

Step 5: Send Buffers to the Open Path
Send each of the 12 buffers to the open path. Here the queue of messages between
application and device becomes more interesting. The following code segment
enqueues all the audio buffers to the device:

int i;

for (i=0, i < 12; ++i)

{

MLpv msg[3];
msg[0].param = ML_AUDIO_BUFFER_POINTER;

msg[0].value.pByte = (MLbyte*)buffers[i];

msg[0].length = bufferSize;

msg[1].param = ML_AUDIO_UST_INT64;

msg[1].param = ML_END;

mlSendBuffers(openPath, msg);
}

12 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

Notice that each audio buffer is sent in its own message. This is because each
message is processed atomically, and therefore refers to a single instant in time. In
addition to the audio buffer, this message also contains space for an audio unadjusted
system time (UST) time stamp. That time stamp will be filled in as the device
processes each message. It will indicate the time at which the first audio sample in
each buffer passed out of the machine.

Step 6: Begin the Transfer
Tell the device to begin the transfer. It reads messages from its input queue, interprets
the buffer parameters within them, and processes those buffers with the following:

mlBeginTransfer(openPath);

At this point, you could tell the program to sleep while the device processes the
buffers, as was done in Chapter 3, "Simple Audio Output Program" on page 5.
However, a more efficient approach is to select the file descriptor for the queue of
messages sent from the device back to your application. In ML terminology, that file
descriptor is called a wait handle on the receive queue:

MLwaitable pathWaitHandle;

mlGetReceiveWaitHandle(openPath, &pathWaitHandle);

Having obtained the wait handle, you can wait for it to fire by using select on IRIX
or Linux, or WaitForSingleObject on Windows, as follows:

On IRIX or Linux:

fd_set fdset;
FD_ZERO(&fdset);

FD_SET(pathWaitHandle, &fdset);

select(pathWaitHandle+1, &fdset, NULL, NULL, NULL);

On Windows:

WaitForSingleObject(pathWaitHandle, INFINITE);

007–4376–001 13

4: Realistic Audio Output Program

Step 7: Receive Replies from the Device
Once the select call fires, a reply will be waiting. Retrieve the reply from the
receive queue as follows:

MLint32 messageType;

MLpv* replyMessage;

mlReceiveMessage(openPath, &messageType, &replyMessage);

if(messageType == ML_BUFFERS_COMPLETE)

printf("Buffer received!\n");

This reply has the same format and content as the buffers message that was originally
enqueued, plus any blanks in the original message will have been filled in. In this
case, the reply message includes the location of the audio buffer that was transferred,
as well as a UST time stamp indicating when its contents started to flow out of the
machine:

MLbyte* audioBuffer = replyMessage[0].value.pByte;

MLint64 audioUST = replyMessage[1].value.int64;

Note: The UST time stamp is useful to synchronize several different media streams
(for example, to make sure the sounds and pictures of a movie match up).

Step 8: Refill the Buffer for Further Processing
You can refill the buffer with more audio data and send it back to the device to be
processed again with the following:

mlSendBuffers(openPath, replyMessage);

In this case, you are making a small optimization. Rather than construct a whole new
buffers message, simply reuse the reply to your original message.

At this point, you have processed the reply to one buffer. If you wish, you can now
go back to the select call and wait for another reply from the device. This can be
repeated indefinitely.

14 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

Step 9: End the Transfer
Once enough buffers have been transferred, you can end the transfer as follows:

mlEndTransfer(openPath);

In addition to ending the transfer, this call performs the following:

• Flushes the queue to the device

• Aborts any remaining unprocessed messages

• Returns any replies on the receive queue to the application

The mlEndTransfer call is a blocking call. When it returns, the queue to the device
will be empty, the device will be idle, and the queue from the device to your
application will contain any remaining replies.

If you wish, you can send more buffers to the path (see "Step 5: Send Buffers to the
Open Path" on page 12).

Step 10: Close the Path
Use the following to close the path:

mlClose(openPath);

Note: This chapter has provided only a quick introduction to an audio output device.
Through a similar interface, ML also supports audio input, video input, video output,
and memory-to-memory transcoding operations.

007–4376–001 15

Chapter 5

Audio/Video Jacks

ML is concerned with three types of interfaces:

• Jacks for control of external adjustments

• Paths for audio and video through jacks in/out of the machine

• Pipes to/from transcoders

All share common control, buffer, and queueing mechanisms. This chapter describes
these mechanisms in the context of operating on a jack and its associated path. The
OpenML Media Library Software Development Kit Programmer’s Guide discusses the
application of these mechanisms to transcoders and pipes.

Open a Jack
To open a connection to a jack, call mlOpen:

MLstatus mlOpen(const MLint64 objectId, MLpv* options, MLopenid* openId);

A jack is usually an external connection point and most often one end of a path. Jacks
may be shared by many paths or they may have other exclusivity inherent in the
hardware. For example, a common video decoder may have a multiplexed input
shared between composite and S-video. If only one can be in use at a given instance,
then there is an implied exclusiveness between them.

Many jacks do not support an input message queue because an application cannot
send data to a jack (it must be sent via a path). Therefore, mlSendControls and
mlSendBuffers are not supported on a jack; you must use mlSetControls to
adjust controls. Typically, the adjustments on a path affect hardware registers and can
be changed while a data transfer is ongoing (on a path that connects the jack to
memory). Examples are brightness and contrast.

Some controls are not adjustable during a data transfer. For example, the timing of a
jack cannot usually be changed while a data transfer is in effect. Reply messages may
be sent by jacks and usually indicate some external condition, such as synchronization
lost or gained.

007–4376–001 17

5: Audio/Video Jacks

Construct a Message
Messages are arrays of parameters, where the last parameter is always ML_END. For
example, you can adjust the flicker and notch filters with a message such as the
following:

MLpv message[3];

message[0].param = ML_VIDEO_FLICKER_FILTER_INT32;

message[0].value.int32 = 1;

message[1].param = ML_VIDEO_NOTCH_FILTER_INT32;
message[1].value.int32 = 1;

message[2].param = ML_END

Set Jack Controls
Jack controls deal with external conditions and not processing associated with data
transfers. Therefore, applications use mlSetControls or mlGetControls calls to
manipulate these controls. Following is an example of how you can obtain the
external synchronization signal (genlock) vertical and horizontal phase immediately:

MLpv message[3];

message[0].param = ML_VIDEO_H_PHASE_INT32;
message[1].param = ML_VIDEO_V_PHASE_INT32;

message[2].param = ML_END;

if(mlGetControls(aJackConnection, message)) handleError();

else

printf("Horizontal offset is %d, Vertical offset is %d\n",
message[0].value.int32, message[1].value.int32);

mlSetControls and mlGetControls are blocking calls. If the call succeeds, the
message has been successfully processed.

Note: Not all controls may be set via mlSetControls. The access privilege in the
param capabilities can be used to verify when and how controls can be modified.

18 007–4376–001

OpenML® Media Library Software Development Kit Beginner’s Guide

Close a Jack
When an application has finished using a jack, it should close it with mlClose:

MLstatus mlClose(MLopenid openId);

All controls previously set by this application normally remain in effect although they
may be modified by other applications.

007–4376–001 19

Index

B

buffer
how to send to device for processing, 8
refill, 14

buffer allocation, 12

C

capability tree, definition, 1
clock, 2

D

definition of ML terms, 1
device

how to locate, 6
device open, 12
device output path

how to open, 6
device path

how to set controls on, 8
how to set up, 7

E

example programs online, 1

G

getting started with ML, 3
graphics / video, definition and distinction

between, 1

I

introduction to ML, 1

J

jack
closing, 19
definition, 2
opening, 17
setting controls, 18

L

logical device, definition, 2

M

media stream count
definition, 2

message construction, 18
ML terms, 1
ML.h file, 5
ML_VIDEO, 18
mlBeginTransfer, 13
mlBeginTransfer call, 9
mlClose, 19
mlclose, 15
mlClose call, 10
mlEndTransfer, 15
mlGetControls, 18
mlOpen, 12, 17
mlquery

system inventory tool, 3

007–4376–001 21

Index

mlSendBuffers, 17
mlSendBuffers call, 8
mlSendControls, 17
mlSetControls, 17, 18
mlu.h file, 5
MSC, definition, 2

O

online ML example programs, 1
open path identifier, 6

P

path, definition, 2
physical device, definition, 1
pipe, definition, 2
program examples

realistic audio output program, 11
simple audio output program, 5

programmer’s guide, 3

R

realistic audio output program, 11
refill the buffer, 14

S

select, 13, 14
simple audio output program, 5

synchronize media streams, 2
system clock, 2
system, definition, 1

T

terms and definitions, 1
time stamp, 13, 14
tools

mlquery system inventory tool, 3
transcoder, definition, 2
transfer, 13

end, 15

U

unadjusted system time (UST) time stamp, 13
UST

definition, 2
UST (unadjusted system time) time stamp, 13

V

video / graphics, definition and distinction
between, 1

W

wait handle, 13
WaitForSingleObject, 13

22 007–4376–001

	Table of Contents
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	ML Terminology
	For More Information

	2. Getting Started with ML
	3. Simple Audio Output Program
	Step 1: Include the ml.h and mlu.h Files
	Step 2: Locate a Device
	Step 3: Open the Device Output Path
	Step 4: Set Up the Audio Device Path
	Step 5: Set Controls on Audio Device Path
	Step 6: Send Buffer to Device for Processing
	Step 7: Begin Message Processing
	Step 8: Receive the Reply Message
	Step 9: Close the Path

	4. Realistic Audio Output Program
	Step 1: Include the ml.h and mlu.h Files
	Step 2: Locate a Device
	Step 3: Open the Device Output Path
	Step 4: Allocate Buffers
	Step 5: Send Buffers to the Open Path
	Step 6: Begin the Transfer
	Step 7: Receive Replies from the Device
	Step 8: Refill the Buffer for Further Processing
	Step 9: End the Transfer
	Step 10: Close the Path

	5. Audio/Video Jacks
	Open a Jack
	Construct a Message
	Set Jack Controls
	Close a Jack

	Index

