KHRONOS @rerXR.

CONNECTING SOFTWARE TO SILICO

Setting up Cross-device OpenXR on
Godot For Windows PCVR

Goal of that document

Step by step guide to create a Godot project based on OpenXR support that can build and
run vendor-agnostic OpenXR application on Windows for PCVR

Create a PCVR cross-device Godot OpenXR project

Godot provides a modular XR system that abstracts many of the different XR platform
specifics away from the user. At the core sits the XRServer which acts as a central interface
to the XR system that allows users to discover interfaces and interact with the components
of the XR system.

Prerequisites for XR in Godot 4

While in Godot 3 most things worked out of the box, Godot 4 needs a little more setup. This
is mainly due to the more advanced nature of the Vulkan renderer. There are many rendering
features in Vulkan the XR system uses that aren't enabled by default. They are very easy to
turn on, simply open up your project settings and tick the XR shaders tickbox in the XR
section:

General

Advanced Settings @

Shaders

Rendering




OpenXR

The Vulkan implementation of OpenXR is closely integrated with Vulkan, taking over part of
the Vulkan system. This requires tight integration of certain core graphics features in the
Vulkan renderer which are needed before the XR system is setup. This was one of the main
deciding factors to include OpenXR as a core interface.

This also means OpenXR needs to be enabled when Godot starts in order to set things up
correctly. The required setting can be found in your project settings:

® Project Settings (project.godot) - O X

General

As setup is brought forward with OpenXR you can find several other settings related to
OpenXR here as well. These can't be changed while your application is running. The default
settings will get us started and we will go into detail in another section of the
documentation.

Setting up the XR scene

Every XR application needs at least an XROrigin3D and an XRCamera3D node. Most will have
two XRController3D, one for the left hand and one for the right. Keep in mind that the camera
and controller nodes should be children of the origin node. Add these nodes to a new scene
and rename the controller nodes to LeftHand and RightHand, your scene should look
something like this:

Scene
+ & Filter nodes

O Main

i XROrigin3D

Camera3D
ftHand
jhtHand




Next you need to configure the controllers, select the left hand and set it up as follows:

Inspector

E &

8 | eftHand

Filter properties

@ XRNode3D
£) left_hand

default
O Node3D
Transform
Visibility

And the right hand:
Ins pec tor
E &
B8 RightHand

default
O Node3D

Right now all these nodes are on the floor, they will be positioned correctly in runtime. To
help during development, it can be helpful to move the camera upwards so its y is set to 1.7,
and move the controller nodes to -0.5, 1.0, -0.5 and 0.5, 1.0, -0.5 for respectively the left and
right hand.

Next, we need to add a Meshlnstance3D node under each hand node in order to be able to
see our hands in XR :

O Main
0rigin3D
RCamera3D
LB | eftHand

Meshlnstance3D

©B RightHand

Meshlnstance3D




And make those Meshlinstance3D small boxes by selecting “New BoxMesh” in the Mesh
property of the inspector. Using the Transform property of the inspector for both Meshes, set
the Scale to 0.1, 0.1, 0.1.

Inspector

E & :
MeshInstance3D
Filter Properties

MeshInstance3D

D

Skeleton
Surface Material Override
GeometryIlnstance3D
Geometry
Global Illumination
Visibility Range
VisualInstance3D

Sorting

O Node3D
Transform




Next we need to add a script to our root node. Add the following code into this script:

GDScript C#

extends Node3D
var xr_interface: XRInterface

func _ready():
xr_interface = XRServer.find_interface("OpenXR")
if xr_interface and xr_interface.is_initialized():
print("0penXR initialized successfully")

# Turn off v-sync!
DisplayServer.window_set_vsync_mode(DisplayServer.VSYNC_DISABLED)

# Change our main viewport to output to the HMD
get_viewport().use_xr = true
else:
print("0OpenXR not initialized, please check if your headset is connected")

This code fragment sets xr_interface to OpenXR.

As you can see in the code snippet above, we turn off v-sync. When using OpenXR you are outputting the
rendering results to an HMD that often requires us to run at 90Hz or higher. If your monitor is a 60hz monitor
and v-sync is turned on, you will limit the output to 60 frames per second.

XR interfaces like OpenXR perform their own sync.

Also note that by default the physics engine runs at 60Hz as well and this can result in choppy physics. You

should set Engine.physics_ticks_per_second to a higher value.



Set default OpenXR Runtime

Now make sure your favorite OpenXR runtime on Windows's set as default runtime. For
SteamVR for example, hit the three-line top-left button and click the “Settings” menu.

= STEAMVR 2
Room Setu
Tutorial

Media P

Recenter

Disg

Display Performance Graph

Devices

Then select “OpenXR” and set SteamVR as OpenXR Runtime.

0 SteamVR Settings

Startup / Shutdown Current OpenXR Runtime:

OpenXR
SET STEAMVR AS OPENXR RUNTIME

MANAGE OPENXR APl LAYERS 0 ACTIVE

RESET PAGE TO DEFAULT

Meta Plugin Compatibility

Advanced Settings

Hide Show

Note: Make sure the "Meta Plugin Compatibility" is "Off" to prevent SteamVR from simulating
the behaviour of a Meta OpenXR runtime. You could switch it to "On" later if needed.



Finally, while we see an environment in our editor, this environment and its lightning are
added by our editor so we can see the content of our scene. If we run our scene now, we
wouldn’t see anything. Use the three dots at the top of the scene window to open up the
environment panel and click on “Add Environment to Scene”

@ ‘h

Preview Sun Preview Environment

Sun Direction Sky Color
‘ Ground Color

Sky Energy
gular Altitude  Azimuth .

50 30 Post Process
Sun Color
Sun Energy

1
Shadow Max Distance

100

Add Environment

kY

Now run your project, you should be floating somewhere in space and be able to look
around.

ﬂ OpenXR cross-vendor (DEBUG)

You can look around and move your two controller-tracked hands (cubes).



	 
	Setting up Cross-device OpenXR on Godot For Windows PCVR 
	Goal of that document 
	Create a PCVR cross-device Godot OpenXR project 
	Prerequisites for XR in Godot 4 
	OpenXR 
	Setting up the XR scene 

	 
	Set default OpenXR Runtime 


