
© The Khronos® Group Inc. 2020 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

Experiences with
Adopting ANARI in

Existing Visualization
Applications

© Khronos® Group 2020

John E. Stone, University of Illinois

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2020 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Analytic Rendering API
Portable access to live rendering systems

• Specification development ongoing
• Exploratory implementations
• Identifying friction points

• Anyone welcome to join!

https://www.khronos.org/anari

https://www.khronos.org/anari

© The Khronos® Group Inc. 2020 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI API Position Within Visualization Stack

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

© The Khronos® Group Inc. 2020 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

Comparison of API Abstraction Levels

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

Vulkan

OpenGL >= 3.x

OpenGL <= 2.x
OptiX <= 6.x

ANARIOSPRay

Embree
OptiX >= 7.0

NVIDIA APIs Intel APIs Open Standards
APIs

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

MD Simulation

VMD – “Visual Molecular Dynamics”

Cell-Scale Modeling

100,000 active users worldwide
Visualization and analysis of:

– Molecular dynamics simulations
– Lattice cell simulations
– Quantum chemistry calculations
– Cryo-EM densities, volumetric data

User extensible scripting and plugins
http://www.ks.uiuc.edu/Research/vmd/

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Software Decomposition

72%

25%

3%

Type of Code

Compute/Viz Rendering GUI

• Rendering code is 25%
core VMD lines of code
– 358,000 LoC total
– 92,000 LoC rendering!

• Need to evolve VMD
toward higher level
rendering abstractions

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Rendering Code
• 92,000 lines in total
• Roughly 20,000 are high level abstractions
• Remaining ~72,000 lines are various (internal) full rendering engines

and their support code
• Tremendous specialized expertise required to write and maintain

renderers anywhere close to current state-of-the-art

© The Khronos® Group Inc. 2020 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

VMD DisplayDevice Subclasses
• Interactive display renderer originally

written using Silicon Graphics IRIS GL
• C++ DisplayDevice subclasses

- Ease support for new interactive
or offline/batch renderers

- CAVE VR displays
- Desktop windowed OpenGL
- Interactive ray tracing
- Heavily used for coupling VMD to

offline/batch renderers

NVIDIA OptiX

Tachyon

NIH BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute,
U. Illinois at Urbana-Champaign

VMDDisplayList

DisplayDevice
Tachyon CPU RT

TachyonL-OptiX GPU RT
Batch + Interactive

OpenGLDisplayDevice

Display Subsystem

Scene Graph

VMD Molecular Structure Data and Global State

User Interface
Subsystem
Tcl/Python Scripting

Mouse + Windows

VR Input “Tools”

Graphical
Representations

Non-Molecular
Geometry

DrawMolecule

Windowed OpenGL GPU

OpenGL Pbuffer GPU

FileRenderer

© The Khronos® Group Inc. 2020 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

VMD Offline Renderer Subclasses
• 20,000+ lines of code in 22+ FileRenderer subclasses

- Every implementation is different despite the common VMD class
hierarchy they operate within

- Development, debugging, testing, and maintenance are all very
costly in time and require significant expertise

• VMD scheme to reduce programming complexity:
Subclasses implement virtual methods for features supported by their
associated back-end renderer
- Unimplemented virtual methods revert to superclass

implementations:
- Provide emulation / alternative / workarounds, e.g. triangulation of

spheres, cylinders, cones
- Runtime warning for anything that remains unimplemented in the

scene

© The Khronos® Group Inc. 2020 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

VMD ANARI Offline Renderer Subclass
• VMD C++ sublasses and virtual methods simplify

porting and incremental bringup of new renderers
- Emulation of missing features always comes at a

performance or memory cost, but for offline
renderers, these are reasonable trade-offs

- Differences in shading and material properties
tend to remain an area where different
renderers still diverge and have a unique “look”

• ANARI has been EASY to implement incrementally
within the VMD offline rendering framework

- Added virtual method for material handling
- Incrementally add virtual methods for geometric

primitive types associated with ANARI subtypes
- NEXT: better integration of ANARI with VMD’s

methods for geometric instancing

© The Khronos® Group Inc. 2020 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

VMD Examples from Early In-Progress ANARI Impls.

Tachyon Ray Tracer
(AO)

OSPRay Path Tracer OptiX Path Tracer

© The Khronos® Group Inc. 2020 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

© The Khronos® Group Inc. 2020 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

© The Khronos® Group Inc. 2020 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

© The Khronos® Group Inc. 2020 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

VMD Interactive Renderer Subclasses
• Current VMD hierarchy branches off from an OpenGL renderer class (several

omitted in the figure below)
- Interactive ray tracing engines (RTRT), real-time video streaming

variations and various VR display subclasses
- RTRT mode only uses OpenGL for windowed image presentation
- Subclasses “piggyback” on the OpenGL superclass methods, and apply

further specialization
- Performance is critical, so there’s no emulation of missing features,

geometric primitives

© The Khronos® Group Inc. 2020 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

VMD Interactive Renderer Subclasses
• Implementation of ANARI in the interactive hierarchy is FAR simpler than

what was done historically for IRIS GL, OpenGL, Vulkan, etc…
• Primary consideration going forward is ensuring maximally efficient use of

ANARI objects, so that ANARI back-end implementations can:
- Use high-performance data transfer/caching methods, particularly on

GPU accelerated back-ends
- Maintain persistent data structures for unchanging scene components
- Minimize geometry acceleration structure (BVH) (re)builds
- Exploit efficient internal methods for object instancing

© The Khronos® Group Inc. 2020 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

VMDDisplayList

DisplayDevice
ANARI

Batch + Interactive

OpenGLDisplayDevice

Display Subsystem

Scene Graph

VMD Molecular Structure Data and Global State

User Interface
Subsystem
Tcl/Python Scripting

Mouse + Windows

VR Input “Tools”

Graphical
Representations

Non-Molecular
Geometry

DrawMolecule

Windowed OpenGL GPU

FileRenderer

© The Khronos® Group Inc. 2020 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI VMD Integration Experiences
• ANARI 1.0 (provisional) includes complete coverage of key required

camera, light, and geometry subtypes for molecular visualization
• Special VMD-specific materials will be an interesting challenge

- VMD will likely co-evolve to exploit ANARI opportunities
- VMD could adopt support for industry standard materials that get

exposed in ANARI either as core features or extensions
• Early ANARI devices that implement the geometric subtypes needed by

VMD already do well as offline renderers, both rendering performance and
memory use are acceptable

• Early experiences with real-time interactive rendering shows that the
ANARI back ends will work very well for static scenes

• VMD ANARI implementation for interactive fully dynamic scene geometry
(simulation “trajectory” time series playback, etc) is in early stages:

- Teaching VMD how to selectively create/destroy individual ANARI scene
elements to facilitate higher interactive renderings when only a small
part of a scene evolves dynamically

© The Khronos® Group Inc. 2020 - Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI VMD Integration Experiences
• Integration with specific types of back-end devices/renderers:

- ANARI devices that use OpenGL require special consideration
related to OpenGL context sharing or management

- ANARI devices using other APIs (Intel Embree, NVIDIA CUDA+OptiX,
Vulkan, …) haven’t yet required special handling since they insulate
of internal state, threading, and context management

- ANARI USD device makes use of ANARI “name” tags on the various
ANARI objects, enabling the tags to be visible in GUI treeview
displays of scene contents

- Required a little finesse to convert VMD-internal scene component
names into something usable in an outboard GUI/renderer combo

- Enables VMD scenes to retain scientifically relevant object, group,
instance name tags within tools like NVIDIA Omniverse Create

© The Khronos® Group Inc. 2020 - Page 21This work is licensed under a Creative Commons Attribution 4.0 International License

VMD+NVIDIA Omniverse Using ANARI USD Impl.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

© The Khronos® Group Inc. 2020 - Page 22This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI Developer Tools
• Special ANARI “devices” for debugging and API tracing
• Debug device interposed in-between active back-end device/renderer and

application
- Catch common ANARI programming mistakes:

- Catch/warn on bad ANARI parameter strings
- Use of uncommitted ANARI object
- Leaked ANARI object (fail to make release calls)
- Warnings for redundant commits

• ANARI API Tracing:
- Capture+log all ANARI API calls and arrays, data, to disk files
- Use captured API trace to (with some editing) create standalone

compilable source code to replay API sequence and associated data
• Future ideas?:

- Includable ANARI-specific profiling tag macros for popular performance
analysis tools

© The Khronos® Group Inc. 2020 - Page 23This work is licensed under a Creative Commons Attribution 4.0 International License

Examples from In-Progress ANARI Impls.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

ParaView visualization rendered with ANARI OSPRay back-end.

© The Khronos® Group Inc. 2020 - Page 24This work is licensed under a Creative Commons Attribution 4.0 International License

Examples from In-Progress ANARI Impls.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

CAVE VR Display at NISTKnots drawn using ANARI sphere
primitives with OSPRay back-end.

© The Khronos® Group Inc. 2020 - Page 25This work is licensed under a Creative Commons Attribution 4.0 International License

Examples from In-Progress ANARI Impls.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

Parametric Surfaces with ANARI VisRTX back-end.

© The Khronos® Group Inc. 2020 - Page 26This work is licensed under a Creative Commons Attribution 4.0 International License

Examples from In-Progress ANARI Impls.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

VisIt distributed memory MPI volume rendering using the ANARI
VisRTX back-end, with IceT image compositing.

© The Khronos® Group Inc. 2020 - Page 27This work is licensed under a Creative Commons Attribution 4.0 International License

Examples from In-Progress ANARI Impls.

ANARI: A 3D Rendering Interface Standard. J. E. Stone, K. Griffin, J. Amstutz, D. DeMarle,
W. Sherman, J. Günther. Computing in Science and Engineering, 2022.

San Miguel scene using ANARI VisRTX back-end.

© The Khronos® Group Inc. 2020 - Page 28This work is licensed under a Creative Commons Attribution 4.0 International License

Q&A Panel

	Slide Number 1
	Slide Number 2
	ANARI API Position Within Visualization Stack
	Comparison of API Abstraction Levels
	Slide Number 5
	VMD Software Decomposition
	VMD Rendering Code
	VMD DisplayDevice Subclasses
	Slide Number 9
	VMD Offline Renderer Subclasses
	VMD ANARI Offline Renderer Subclass
	VMD Examples from Early In-Progress ANARI Impls.
	Slide Number 13
	Slide Number 14
	Slide Number 15
	VMD Interactive Renderer Subclasses
	VMD Interactive Renderer Subclasses
	Slide Number 18
	ANARI VMD Integration Experiences
	ANARI VMD Integration Experiences
	VMD+NVIDIA Omniverse Using ANARI USD Impl.
	ANARI Developer Tools
	Examples from In-Progress ANARI Impls.
	Examples from In-Progress ANARI Impls.
	Examples from In-Progress ANARI Impls.
	Examples from In-Progress ANARI Impls.
	Examples from In-Progress ANARI Impls.
	Q&A Panel

